Use of Some Metalferrites as Catalyst in Benzil-Benzilicacid Rearrangement Reaction

Neha Godha a* and Suresh C. Ameta a

a Department of Chemistry, PAHER University, Udaipur-313003 (Rajasthan), India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOCS/2023/v13i4246

ABSTRACT

Magnesium ferrite was used to catalyse the Benzil-Benzilic acid rearrangement reaction of 1,2-rearrangement of 1,2-diketones to α-hydroxy carboxylic acids in presence of a base. Magnesium ferrite was prepared by hydrothermal process. It was characterized by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction Spectroscopy (XRD), and Energy Dispersive X-Ray Spectroscopy (EDX). The crystalline size of magnesium ferrite was found to have 82.47nm and these are irregular in shape. It was found that the yield of the product (benzilic acid) in the presence of Mg ferrite was 81.6%, which is almost 2.3 times the yield obtained in the absence of catalyst. A comparative study was made with different metal ferrites as catalyst and it was found that the activity of metal ferrites followed the order:

MgFe₂O₄ > CuFe₂O₄ > NiFe₂O₄ > CoFe₂O₄ > ZnFe₂O₄
1. INTRODUCTION

Odagı et al. [1] reported “an enantioselective syntheses of the norhasubanan alkaloid (+)-stephadiamine and hasubanan alkaloid (-)-metaphanine. It involves diastereoselective oxidative phenolic coupling reaction, which was followed by regioselective intramolecularaza-Michael reaction, affording hasubanan skeleton. It was observed that (-)-metaphanine is easily converted to (+)-stephadiamine through aza-benzilic acid type rearrangement”.

Wu et al. [2] reported “catalytic enantioselective benzilic ester rearrangement. Reaction of 2,3-diketoesters with alcohols afforded structurally diverse α-aryl(alkyl) substituted α-hydroxymalonates. It was observed that in presence of a catalytic amount of Cu(OTf)2 and a chiral box ligand, this reaction proceeds under mild conditions and afforded good to excellent yields with high enantioselectivities”.

Xiao et al. [3] carried out “synthesis of anti-HIV (-)-isatisine A in eight steps from indole and 4,6-O-isopropylidene-protected glucal. Indole C-furanoside was derived from indole C-glucoside via a ring contractive benzilic acid rearrangement. The biogenetic hypothesis was supported by model studies that the O-glucoside was converted to C-furanoside through benzilic acid rearrangement”.

Schwiderski and Kruse [4] investigated “catalytic effect of the Bronsted acid, Bronsted base and the Lewis acid on the conversion of biomass derived carbohydrates. One of the example is of the glycolaldehyde conversion. It was reported that the Lewis acid catalyzes the dehydration, ketol-endiol-tautomerism, retro-aldo-reaction and also benzilic acid rearrangement. The main products obtained were C4 and C5-carbohydrates along with some secondary products 2-hydroxybut-3-enoic acid and furans”.

Yamabe, Tsuchida [5], and others “Calculations based on density functional theory were used to examine the reaction pathways for the methyl analogue and the title rearrangement. The water tetramer is used both for solvation to OH- and for the proton relay along hydrogen bonds in the reaction model, which is RCOCOR + OH-(H2O)4 R2C(OH)COO- + (H2O)4 (R = Me and Ph). Carbanion [1,2] migration, OH- addition, C-C rotation, and proton relay towards the product anions make up the reaction. The carbanion migration was determined to be the rate-determining phase. Compared to carbonium ion migration, carbanion [1,2] migration appears to be uncommon. The 1,2-diketones' LUMOs, on the other hand, feature sizable, nodeless lobes at the reaction’s core, the C(1)–(C(2)) bond. Both the [2+1]-like one-center nucleophilic addition and the unique LUMO feature are indicative of this”.

Saiz, Pizzo, and others [6] “In a three-component reaction, 2-hydrazolyl-4-thiazolidinones (5) can be made using a tandem technique from commercially available ingredients. By way of microwave irradiation, the reaction between aldehydes, thiosemicarbazides, and maleic anhydride is successfully facilitated. It is also reported on the synthesis of a novel chemical, 2-hydrazolyl-5,5-diphenyl-4-thiazolidinone (7), which was produced by treating thiosemicarbazone with benzil in basic medium. To describe the suggested reaction mechanism, orbital coefficients, charge distribution, and HOMO/LUMO energies were used.”

Patra, Ghorai [7], and others describe a region-specific approach to benzo[b]fluorenes. The 1,4-dipolar synthons are benzannulated in one pot, regiospecifically, using naphthoquinone monoketal, and the resulting benz[a]anthracene-5,6-diones are then ring-contracted by benzil-benzilic acid rearrangement.

Nair, Pillai [8], and others 1,2-diaryl diones and dimethyl butynedioate react with pyridine to produce diaryl maleates. This rare rearrangement involves a distinctive benzyl migration and is carried out entirely stereoselectively.

Joshi and Kumar [9] synthesize “a highly effective and environmentally friendly catalyst for the aerobic oxidation of benzyl groups and the methylene carbon of primary amines into the corresponding amides and ketones was found to be tetrabutylammonium hydroxide (TBAOH). In this article, we described how elemental sulphur and ionic liquid TBAOH catalysed the aerobic oxidation of benzyl amines to benzamides. The resulting benzylbenzothioamides were produced without the need of metals, oxidants, or bases. The current methodology also illustrates its applicability at the gramme scale for the synthesis of the necessary amides/ketones”.

Keywords: Benzil-Benzilic acid rearrangement reaction; magnesium ferrite; catalyst; synthesis; hydrothermal method.
Hussein and Moustafa [10] was reported this work, the two novel methods were achieved for the preparation of benzil derivatives 2a–f with high yields and short reaction time from benzoins 1a–f via; (i) their refluxing with a mixture of sulfur and morpholine in ethanol, and (ii) their stirring with oxidizing agent "DMSO-NaBr-H₂SO₄ system" at 85°C. Thus, a new series of (5-oxo-4,4-diarylimidazolidin-2-ylidene)cyanamide 3a–f was already synthesized from the reaction of benzils 2a–f with commercially available cyanoguanidine in the presence of sodium ethoxide as a basic catalyst. The new products 3a–f were exhibited promising antioxidant activity based on "in vitro" assays in 2,2-diphenyl-1-picrylhydrazyl (DPPH) compared to vitamin C.

2. MATERIALS AND METHODS

2.1 Materials

Magnesium nitrate hexa hydrates (SRL) was utilized with a purity of 99% and NaOH (98%) for the production of nanoparticles. Benzaldehyde, malonic acid and liquid ammonia were procured from Rankem, and Fischer scientific respectively.

2.2 Synthesis of Magnesium Ferrite Nanoparticles

A hydrothermal approach similar to that employed by Naidu and Madhuri [11] was utilized to synthesize magnesium ferrite using a Teflon-coated autoclave. Magnesium nitrate hexahydrate and ferric nitrate nanohydrate were utilized as magnesium and iron precursors, respectively. Magnesium and iron nitrates were dissolved in distilled water in a nitrate: water ratio 1:3. The resulting solution was stirred, and then NaOH was added drop by drop in 1:4 ratios until the pH reached 11. After rapid stirring for 2 h, the liquid was moved to a Teflon-coated stainless steel autoclave and sealed. The autoclave was then heated to 150°C for about 48 h. The autoclave was allowed to cool at ambient temperature after heating is over [11].

3. RESULTS AND DISCUSSION

3.1 Field Emission Scanning Electron Microscopy (FESEM)

The JSM-6100 (JEOL) with a digital image processor was used to record FESEM to know the morphology of as-prepared magnesium ferrite particles. The FESEM images are shown in Fig. 1.

It was observed that these magnesium ferrite particles are having a nanoflower like structure.

3.2 X-Ray Diffraction (XRD)

A x· Pert Pro XRD equipped with an X'Celerator solid state detector was used to record X-ray diffraction pattern. The XRD of magnesium ferrite revealed the crystalline character of this sample. The result tare reported in Fig. 2.

The Debye-Scherrer equation was used to compute the average particle size of particles, which was found to be in the nano-range (82.47 nm).

Fig. 1. FESEM Image of magnesium ferrite [12]
3.3 X-Ray Photoelectron Spectroscopy (XPS)

“A Thermo K-alpha+X-ray spectrometer was used for X ray photoelectron spectral analysis. A KRUSS drop shape analyzer was used to measure the contact angle. XPS of magnesium ferrite indicated that Mg, Fe, and O are present in 1s, 2p, and 1s states, respectively in this sample” [12].

3.4 Energy-Dispersive X-Ray Spectroscopy (EDX)

Energy-dispersive X-ray spectrum was recorded with JSM 7600 F (Jeol). The results are reported in Fig. 3.

The EDX of magnesium ferrite revealed peaks for Mg, Fe and O only, which indicated that the sample of magnesium ferrite is pure and free of any impurity.

3.5 Benzil- Benzilic Acid Rearrangement Catalyzed by Magnesium Ferrite

The potassium hydroxide pellets (5 g) was dissolved in 10 mL of water and 15 mL of ethyl alcohol and magnesium ferrites (0.10 g) were added to this solution under stirring. Then 5 g of pure benzyl was added and it was boiled for 10 to 15 minutes. The content of the flask was transferred into a small beaker or a porcelain dish. It was allowed to settle for many hours until all of the potassium benzilate was crystallised. Conc. HCl (8 mL) was added to dissolve potassium benzilate in 50 mL of water. It was filtered with ice-cold ethanol. The obtained product was washed with water, air dried and then recrystallized.

![XRD pattern of magnesium ferrite](image1)

Fig. 2. XRD pattern of magnesium ferrite [12]

![EDX spectrum of magnesium ferrite](image2)

Fig. 3. EDX spectrum of magnesium ferrite [12]
3.6 Transform Infrared (FTIR) Spectrum

The FTIR Spectrometer RX-I was used to record IR spectrum of the product. The spectrum is given in Fig. 4.

A band at 3398 cm\(^{-1}\) indicated the presence of -OH stretching vibration while another band at 3063 cm\(^{-1}\) is due to -CH stretching vibration in aromatic system. A band at 1761 cm\(^{-1}\) may be due to C=O in carboxylic group. Bands at 1172 cm\(^{-1}\) may be attributed to -CH in-plane bending vibration while bands at 929, 874, and 770 cm\(^{-1}\) are due to -CH out-of-plane benzene vibration. The presence of bands at 1667 and, 1695 cm\(^{-1}\) may be due to C=C and C=O vibrations.

Fourier transform nuclear magnetic resonance spectrum: FT-NMR spectrometer model Advance-II (Bruker) (400 MHz) was used to record NMR spectrum of the product.

NMR spectrum of the product indicated signals in the range 7.31 δ (doublet) at 7.44-7.49 δ. Two more signals at 7.64-7.95 δ may be due to different aromatic protons.

The product was confirmed as potassium benzilate on the basis of FT-IR and FT-NMR data. It was also confirmed by m.p. and m.m.p.

3.7 Effect of Different Parameters

Different factors were varied to achieve optimal conditions such as amount of benzil, ethyl alcohol, potassium hydroxide, catalyst, etc. The effect of benzil was observed in the range of 3.0-8.0 g. The results are shown in Table 1.

It was observed that when the amount of benzil was increased keeping other parameters constant, then the yield increases up to 5.0 g of benzil and then showed a declining behavior above 5.0 g. It may due to the fact that the 5.0 g is the required amount of benzil, above which it remains unreacted.

The effect of potassium hydroxide was observed in the range of 2.5-7.0 g. The results are shown in Table 2.
It was observed that when the amount of potassium hydroxide was increased keeping other parameters constant, then the yield increases up to 5.0 g of potassium hydroxide and then showed a declining behavior above 5.0 g. It may be due to the fact that 5.0 g is the required amount of potassium hydroxide for maintaining desired pH.
Table 4. Effect of magnesium ferrite

<table>
<thead>
<tr>
<th>Benzyl (g)</th>
<th>Potassium hydroxide (g)</th>
<th>Ethyl alcohol (mL)</th>
<th>Magnesium ferrite (g)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.05</td>
<td>38.3</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.08</td>
<td>60.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.10</td>
<td>81.6</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.11</td>
<td>67.2</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.13</td>
<td>50.4</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>15.0</td>
<td>0.15</td>
<td>40.4</td>
</tr>
</tbody>
</table>

Table 5. Reusability of magnesium ferrite [12]

<table>
<thead>
<tr>
<th>Used</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>100.0</td>
</tr>
<tr>
<td>Second</td>
<td>98.4</td>
</tr>
<tr>
<td>Third</td>
<td>97.2</td>
</tr>
<tr>
<td>Fourth</td>
<td>96.3</td>
</tr>
<tr>
<td>Fifth</td>
<td>95.2</td>
</tr>
</tbody>
</table>

The effect of ethyl alcohol was observed in the range of 10.0-25.5 mL. The results are shown in Table 3.

It was observed that when the amount of ethyl alcohol was increased keeping other parameters constant, then the yield increases up to 15.0 mL of ethyl alcohol and then showed a declining behavior above 15.0 mL. It may due to the fact that the 15.0 mL is the required amount of ethyl alcohol, above which it remains unreacted.

The effect of magnesium ferrite was observed in the range of 0.05-0.15 g. The results are shown in Table 4.

It was observed that when the amount of magnesium ferrite was increased keeping other parameters constant, then the yield increases up to 0.10 g of magnesium ferrite and then showed a declining behavior above 0.10 g.

It may be attributed to the fact that all active sites are occupied (saturated state) and as a result, yield decreases.

The highest yield of benzilic acid could be obtained under the following optimum conditions:

Benzil = 5.0 g, Ethyl alcohol = 15.0 mL, KOH = 5.0 g, Mg-ferrite = 0.10 g

A comparative study was also carried out to compare the efficacy of different metal ferrites for benzilic acid rearrangement reaction, which followed the order:

MgFe$_2$O$_4$ (81.6 %) > Cu Fe$_2$O$_4$ (70.2%) > Ni Fe$_2$O$_4$ (51.6%) > Co Fe$_2$O$_4$ (40.3 %) > Zn Fe$_2$O$_4$ (37.5%)

When the reaction was finished, the catalyst was cleaned and dried. It was employed for this condensation five more times without experiencing a material decline in effectiveness. Therefore, catalyst can be recycled. Table 5 presents the findings.

4. APPLICATION

As a nanocatalyst, magnesium ferrite has been employed to drive Knoevenagel condensation with success. It can be used as a catalyst for various other important organic synthesis processes.

5. CONCLUSION

The MgFe$_2$O$_4$ nanoparticles with an average size of 82.47 nm were prepared via a hydrothermal procedure using Teflon lined autoclave. These nanoparticles were utilized as a catalyst in the presence of potassium hydroxide for the Benzyl-benzilic acid rearrangement reaction of benzyl and ethyl alcohol. This strategy offers a number of important benefits, including a good yield in less time. With this simple method, the catalyst can be utilized more than five times without significantly losing its catalytic activity. Magnesium ferrite can thus be utilized as a safe catalyst in benzil-benzilic acid rearrangement processes.
DISCLAIMER

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGEMENT

I am grateful to the Indian Institute of Technology, Gandhinagar for FESEM and EDX, as well as the National Chemical Laboratory, Pune for XPS. I would also like to thank SAIF at Panjab University for recording XRD, FTIR, and NMR spectrum data and Department of Chemistry, PAHER University, Udaipur, Rajasthan, India for providing necessary laboratory facilities.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/102436