Asian Journal of Chemical Sciences

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 9 [Issue 3]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Characterization of the Structure of 2-(4-methyl-2 Phenyl-4, 5-dihydrooxazol-4-ylmethyl)-isoindole-1, 3-dione by 1D, COSY and HSQC 2D NMR Spectroscopy

  • Khadim Dioukhane
  • Younas Aouine
  • Asmae Nakkabi
  • Salaheddine Boukhssas
  • Hassane Faraj
  • Anouar Alami

Asian Journal of Chemical Sciences, Page 30-37
DOI: 10.9734/ajocs/2021/v9i319074
Published: 15 March 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


The identity of the 2-(4-Methyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl)-isoindole-1,3-dione, previously synthesized in our laboratory, was proven without doubt by means of 1D and 2D NMR spectroscopy. Two-dimensional NMR spectroscopy played a major role. The analysis of the 2D-COSY spectrum of isoindoline-1,3-dione derivative shows a perfect correlation between neighboring protons. Thus, a correlation was noted between the protons of the phthalimide, H(8) and H(9) on the one hand and H(8') and H(9') on the other hand. The analysis of the 2D-HSQC spectrum of the studied compound indicates a faultless correlation between protons and adjacent carbons, and no correlation in the case of all quaternary carbons.


Keywords:
  • Isoindoline
  • 1,3-dione
  • 1D NMR
  • 2D COSY
  • 2D HSQC
  • Full Article - PDF
  • Review History

How to Cite

Dioukhane, K., Aouine, Y., Nakkabi, A., Boukhssas, S., Faraj, H., & Alami, A. (2021). Characterization of the Structure of 2-(4-methyl-2 Phenyl-4, 5-dihydrooxazol-4-ylmethyl)-isoindole-1, 3-dione by 1D, COSY and HSQC 2D NMR Spectroscopy. Asian Journal of Chemical Sciences, 9(3), 30-37. https://doi.org/10.9734/ajocs/2021/v9i319074
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Nagaraja O, Bodke YD, Pushpavathi I, Ravi Kumar S, Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon. 2020;6(6):04245. DOI: 10.1016/j.heliyon.2020.e04245.

Kraïem J, Kacem Y, Bahy A, Ben Hassine B. Réaction des N-oxydes de 2-hydroxybenzylidènealkylamines avec l’isocyanate de chlorosulfonyle : Synthèse de nouveaux composés hétérocycliques. Comptes Rendus Chim. 2007;10(9):827-831. DOI: 10.1016/j.crci.2007.03.014.

Hamou N, Ibrahimi S, Salem M, Mokhtar E, Amzazi S, Benjouad A. Synthèse et propriétés biologiques benzodiazepines. 2001;4:917-924. DOI: 10.1016/S1387-1609(01)01302-0.

Zniber. Heterocycles from benzimidazole. Tetrahedon Leters. 1990;31:5467. DOI: 10.1016/S0040-4039(00)97874-2.

Kim D et al. Antagonists : Effects of fused heterocycles on antiviral activity and pharmacokinetic properties. 2005;15:2129-2134. DOI: 10.1016/j.bmcl.2005.02.030.

Maaliki C et al. Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorganic Med. Chem. 2020;28 (13):115579. DOI: 10.1016/j.bmc.2020.115579.

Kumar S, Verma R, Verma S, Vaishnav Y. European journal of medicinal chemistry anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives : A key review. Eur. J. Med. Chem. 2021;209:112886. DOI: 10.1016/j.ejmech.2020.112886.

Murthy PK et al. Towards the new heterocycle based molecule: Synthesis, characterization and reactivity study. J. Mol. Struct. 2017;1137:589–605. DOI: 10.1016/j.molstruc.2017.02.071.

Chakraborty B, Chettri E. Results in chemistry mechanochemical synthesis of some heterocyclic molecules using Sonogashira cross-coupling reaction and their anticancer activities. Results Chem. 2020;2:100037. DOI: 10.1016/j.rechem.2020.100037.

Aouad MR, Almehmadi MA, Rezki N, Al Blewi FF, Messali M, Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019;1188;153-164. DOI: 10.1016/j.molstruc.2019.04.005.

Maaliki C et al. Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorganic Med. Chem. 2020;28 (13):15579 DOI: 10.1016/j.bmc.2020.115579.

Kumar S, Verma R, Verma S, Vaishnav Y. European journal of medicinal chemistry anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives : A key review. Eur. J. Med. Chem. 2021;209:112886. DOI: 10.1016/j.ejmech.2020.112886.

Patel TS, Bhatt JD, Dixit RB, Chudasama CJ, Patel BD, Dixit BC. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4(3H)-one-sulphonamide hybrid entities distorting the malarial reductase activity in folate pathway. Bioorganic Med. Chem. 2019; 27(16):3574–3586 DOI: 10.1016/j.bmc.2019.06.038.

Andrejević TP et al. Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin. J. Inorg. Biochem., 2020;208: 111089

Ma X, Wang H, Zhou S, Feng Z, Liu H, Guo W. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas Sci. Eng. 2020;84:103674. DOI: 10.1016/j.jngse.2020.103674.

Song YQ. A 2D NMR method to characterize granular structure of dairy products. Prog. Nucl. Magn. Reson. Spectrosc. 2009;55(4):324–334. DOI: 10.1016/j.pnmrs.2009.07.001.

Jiang L, Howlett K, Patterson K, Wang B. Introduction of a new method for two-dimensional NMR quantitative analysis in metabolomics studies. Anal. Biochem. 2020;597:113692 DOI: 10.1016/j.ab.2020.113692.

Snyder DA. Covariance NMR: Theoretical concerns, practical considerations, contemporary applications and related techniques. Prog. Nucl. Magn. Reson. Spectrosc. 2021;122:1-10 DOI: 10.1016/j.pnmrs.2020.09.001.

Michal CA. Low-cost low-field NMR and MRI: Instrumentation and applications. J. Magn. Reson. 2020;319:106800. DOI: 10.1016/j.jmr.2020.106800.

Kaiser CR. 2D NMR: Inverse detection and field gradient in structure determination of organic compounds. Quim. Nova. 2000;23 (2):231–236. DOI: 10.1590/S0100-40422000000200014. Riegel SD, Leskowitz GM. TrAC, 2016;8327-38.

Dioukhane K et al. Synthesis, crystal structure and IR spectrum studies of 2-(4-methyl-2-phenyl-4,5-dihydro-oxazol-4-ylmethyl)- isoindole-1,3-dione. Mediterr. J. Chem. 2019;9(2):116-124.
  • Abstract View: 50 times
    PDF Download: 31 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Journal of Chemical Sciences. All rights reserved.