Fast Detection of Chloramphenicol in Raw Milk Using a Hairpin Aptamer-templated Silver Nanoclusters
Asian Journal of Chemical Sciences,
Page 8-21
DOI:
10.9734/ajocs/2021/v9i419077
Abstract
In this presented work, a facile and efficient method was established for the detection of chloramphenicol (CAP) based on target-induced structure transformation of aptamer. This aptamer DNA with a hairpin structure can coincidentally serve as a template for the synthesis of bright silver nanoclusters (quantum yield 16.36%). The binding of CAP with aptamer DNA could cause the destruction of the hairpin structure, resulting in the quenching of the fluorescence of silver nanoclusters (AgNCs). It costs less than 10 minutes to complete the assay, and excellent sensitivity was achieved with detection limit of 0.052 nmol/L. The selectivity and recovery experiments also demonstrated satisfactory results of this proposed protocol. The method has potential applicability, and provides a new strategy for the development of label-free sensors based on aptamer and AgNCs.
Keywords:
- Chloramphenicol
- silver nanoclusters
- aptamer
- fast detection
How to Cite
References
Gillings, Michael R. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome [J]. Frontiers in Microbiology. 2013;4(4):4.
Brown CA. Reducing outpatient antibiotic prescribing for acute respiratory infections: A quasi-experimental study [J]. Journal of Doctoral Nursing Practice. 2018;11(1):3-15.
Surlemont J, Lecuelle D, Courbier G, et al. Antibiotic therapy in pediatric acute appendicitis: Compliance with local protocol to reduce antibiotic overuse[J]. Archives de Pédiatrie; 2020.
Chon SY, Doan HQ, Mays RM, et al. Antibiotic overuse and resistance in dermatology [J]. Dermatologic Therapy. 2012;25(1):55-69.
Bassetti M, Melica G, Cenderello G, et al. Gram-positive bacterial resistance. A challenge for the next millennium [J]. Panminerva Medica. 2002;44(3):179.
Ameline A, Taquet MC, Terrade JE, et al. Identification of chloramphenicol in human hair leading to a diagnosis of factitious disorder [J]. Clinical Toxicology. 2020; 58(2):1-5.
Immunization with a biofilm-disrupting nontypeable haemophilus influenzae vaccine antigen did not alter the gut microbiome in chinchillas, Unlike oral delivery of a broad-spectrum antibiotic commonly used for otitis media [J]. American Society for Microbiology. 2020;5: e00296-20.
Mordi RM, Momoh MI. A five year study on the susceptibility of isolates from various parts of the body [J]. African Journal of Biotechnology. 2008;7(19):3401-3409.
Gill JM, Fleischut P, Haas S, et al. Use of antibiotics for adult upper respiratory infections in outpatient settings: A national ambulatory network study [J]. Family Medicine. 2006;38(5):349-54.
Arason VA, Sigurdsson JA. The problems of antibiotic overuse [J]. Scandinavian Journal of Primary Health Care. 2010; 28(2):65.
Ming Zhang A, et al. "Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres." Journal of Hazardous Materials; 2020.
Zhang H, Wang J, Zhou B, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution. 2018;243(PT.B): 1550-1557.
Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat [J]. Chemosphere. 2019; 215:846-857.
Yu F, Li Y, Huang G, et al. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution [J]. Chemosphere. 2020;260:127650.
Kikuchi H, Sakai T, Teshima R, et al. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry [J]. Food Chemistry. 2017;230:589-593.
Po-Hsun Lin, Shih-Lun Yen, Ming-Shen Lin, et al. Microcalorimetrics studies of the thermodynamics and binding mechanism between l-tyrosinamide and aptamer [J]. The Journal of Physical Chemistry B. 2008;112(21):6665-73.
Yangbao Miao, Gan N, Li T, et al. A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification [J]. Sensors and Actuators B: Chemical. 2015;220:679–687.
Xia W. Development of methods for detection of antibiotics residues in milk [J]. Food & Fermentation Industries. 2004; 30(7):112-116.
Lidija Kozačinski, Andrea Benussi Skukan, Ivana Filipović. Methods for detection of antibiotics and sulphonamides in meat [J]. Meso. 2006;viii(1):37-42.
Kim EA, Kwak HS. Comparison of methods for detection of antibiotics in milk [J]. Korean Journal of Dairy science; 1991.
Bedenic B, Vranes J, Mihaljevic LJ, et al. Sensitivity and specificity of various beta-lactam antibiotics and phenotypical methods for detection of TEM, SHV and CTX-M extended-spectrum beta-lactamases [J]. Journal of Chemotherapy. 2007;19(2):127-139.
YANO, Nobuhiro, ISHII, et al. Modification of the disk assay method for detection of antibiotics by direct seeding of spores of bacillus stearothermophilus [J]. Food Hygiene and Safety Science; 1975.
Babington R, Matas S, Marco MP, et al. Current bioanalytical methods for detection of penicillins [J]. Analytical and Bioanalytical Chemistry. 2012;403(6): 1549-1566.
Joshua Daniel Arias. Naturally-derived antibiotics from streptomyces zaomyceticus inhibit MRSA [J]; 2015.
Wang J, Hu Z, Feng L, et al. Determination of 22 antibiotics in disinfection products by ultra-performance liquid chromatography tandem mass spectrometry [J]. Journal of Hygiene Research. 2019;48(1):129-135.
Na W, Zhi-Li P, Jing-Yun F, et al. Determination of metabolites of nitrofuran antibiotics in pre-export pork by high performance liquid chromatography-tandem mass spectrometry [J]. Food science; 2008.
Ohmori T, Suzuki A, Niwa T, et al. Simultaneous determination of eight β-lactam antibiotics in human serum by liquid chromatography–tandem mass spectrometry [J]. Journal of Chromatography B. 2011;879(15-16):1038-1042.
Li N, Zhang X, Wu W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China [J]. Chemosphere. 2014;111:327-335.
Preinerstorfer B, Schiesel S, L Mmerhofer M, et al. Metabolic profiling of intracellular metabolites in fermentation broths from beta-lactam antibiotics production by liquid chromatography-tandem mass spectrometry methods [J]. Journal of Chromatography A. 2010;1217(3):312- 328.
Melnik, Neumann AC, et al. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine] microcystin in freshwater [J]. Plant Biotechnol J; 2018.
Ball HJ, Finlay D, Burns L, Mackie DP. Application of monoclonal antibody-based sandwich ELISAs to detect verotoxins in cattle faeces [J]. Research in Veterinary Science; 1994.
Panat A, Runglawan C, Prasert S, et al. Immunodiagnosis of fasciola gigantica infection using monoclonal antibody- based sandwich ELISA and immunochromatographic assay for detection of circulating cathepsin L1 protease [J]. Plos One. 2016;11(1): e0145650.
Chenard G, Bloemraad M, Kramps JA, et al. Validation of a monoclonal antibody-based ELISA to detect antibodies directed against swine vesicular disease virus [J]. Journal of Virological Methods. 1998;75(1): 105-112.
Scognamiglio V, Pezzotti G, Pezzotti I, et al. Biosensors for effective environmental and agrifood protection and commercialization: From research to market [J]. Microchimica Acta. 2010;170(3-4):215-225.
Verdian-Doghaei, A, Housaindokht MR. Spectroscopic study of the interaction of insulin and its aptamer – sensitive optical detection of insulin [J]. Journal of Luminescence. 2015;159:1-8.
Verdian-Doghaei A, Housaindokht MR, Bozorgmehr MR, et al. Conformational switch of insulin-binding aptamer into G-quadruplex induced by K+ and Na+: An experimental and theoretical approach [J]. Journal of Biomolecular Structure and Dynamics. 2015;33(6):1153-1163.
Bock LC, Griffin LC, Latham JA, et al. Selection of single-stranded DNA molecules that bind and inhibit humanthrombin [J]. Nature. 1992; 355(6360):564-6.
Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes [J]. Nature Protocols. 2006;1(1):246-252.
Deng Q, German I, Buchanan D, et al. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase [J]. Analytical Chemistry. 2001;73(22):5415-5421.
Hansen JA, Wang J, Kawde AN, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J]. Journal of the American Chemical Society. 2006;128(7):2228-2229.
Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy and sensing of drug delivery based on bi-fluorescence resonance energy transfer [J]. Nano Letters. 2007;7(10):3065-3070.
Zhou L, Gan N, Zhou Y, et al. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes [J]. Talanta. 2017;167(Complete):544-549.
Chen M, Gan N, Zhou Y, et al. A novel aptamermetalions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification [J]. Sensors and Actuators, B: Chemical. 2017;242:1201-1209.
Lin CA, Yang TY,Lee CH,et al. Synthesis, characterization and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications [J]. Acs Nano. 2009;3(2):395-401.
Feng L,Huang Z,Ren J,et al. Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds [J]. Nucleic Acids Research; 2012;40(16): e122.
Wang R,Lu KQ,Tang ZR,et al. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis [J]. Journal of Materials Chemistry A. 2017;5(8):3717-3734.
Martinez JS, Xie J. Preface for special topic: Few-atom metal nanoclusters and their biological applications [J]. APL Materials. 2017;5(5):053001.
Jin RC. Atomically precise metal nanoclusters: Stable sizes and optical properties [J]. Nanoscale. 2015;7(5):1549-1565.
Selvaprakash K,Chen YC. Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules [J]. Biosensors and Bioelectronics. 2014;61:88-94.
Lu YZ,Wei WT,Chen W. Copper nanoclusters: Synthesis, characterization and properties [J]. Chinese Science Bulletin. 2012;57(1):41-47.
Xu HX,Suslick KS. Water-soluble fluorescent silver nanoclusters [J]. Advanced Materials. 2010;22(10):1078-1082.
Kang X,Zhou M,Wang S,et al. The tetrahedral structure and luminescence properties of Bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster [J]. Chemical Science. 2017;8(4):2581-2587.
Ayesh AI, Thaker S, Qamhieh N, et al. Size-controlled Pd nanocluster grown by plasma gas-condensation method [J]. Journal of Nanoparticle Research. 2011;13(3):1125-1131.
Aiken JD,Lin Y,Finke RG. A perspective on nonocluster catalysis: Polyoxoanion and (n-C4H9)4N+ stabilized Ir(0)~300 nanocluster ‘soluble heterogeneous catalysts’[J]. Journal of Molecular Catalysis A: Chemical. 1996;114(24):29-52.
Jin R. Atomically precise metal nanoclusters: Stable sizes and optical properties [J]. Nanoscale. 2015;7(5):1549-1565.
Xavier PL,Chaudhari K,Baksi A, et al. Protein-protected luminescent noble metal quantum clusters: An emerging trend in atomic cluster nanoscience [J]. Nano Reviews. 2012; 3(1):14767-14782.
Shang L,Dong S,Nienhaus GU. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications [J]. Nano Today. 2011;6(4):401-418.
Zhang L,Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging [J]. Nano Today. 2014;9(1):132-157.
Wilcoxon JP, Abrams BL. Synthesis, structure and properties of metal nanoclusters [J]. Chemical Society Reviews. 2006;35(11):1162-1194.
Shen F, Cheng Y, Xie Y, et al. DNA-silver nanocluster probe for norovirus RNA detection based on changes in secondary structure of nucleic acids [J]. Analytical Biochemistry. 2019;583:113365.
Xu M, Gao Z, Wei Q, et al. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification [J]. Biosensors and Bioelectronics. 2016;79:411-415.
Guo Y, Shen F, Cheng Y, et al. The light-up fluorescence of AgNCs in a "DNA bulb" [J]. Nanoscale. 2018;10.
Driehorst T, Oneill PR, Goodwin PM, et al. Distinct conformations of DNA-stabilized fluorescent silver nanoclusters revealed by electrophoretic mobility and diffusivity measurements [J]. Langmuir. 2011;27(14): 8923-8933.
Sengupta B, Ritchie CM, Buckman JG, et al. Base-directed formation of fluorescent silver clusters [J]. Journal of Physical Chemistry C. 2008;112(48):18776-18782.
Ritchie CM, Johnsen KR, Kiser JR, et al. Ag nanocluster formation using a cytosine oligonucleotide template [J]. Journal of Physical Chemistry C. 2007;111(1):175-181.
Oneill PR, Velazquez LR, Dunn DG, et al. Hairpins with poly-C loops stabilize four types of fluorescent AgNCs:DNA [J]. Journal of Physical Chemistry C. 2009; 113(11):4229-4233.
Gwinn E, Oneill PR, Guerrero A, et al. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters[J]. Advanced Materials. 2010;20(2):279-283.
Chen S, Xie Y, et al. Molecular imprinted polymers based on carbon points were used to detect chloramphenicol in crucian carp [J]; 2019.
Chen Y, Li H, et al. Fluorescent gold nanoclusters were used for rapid detection of chloramphenicol in pork [J]. Journal of Anhui Agricultural Sciences. 2020;48: 644(07):221-226.
Petty JT, Zheng J, Hud NV, et al. DNA-templated Ag nanocluster formation [J]. Journal of the American Chemical Society. 2004;126(16):5207-5212.
Teng Y, Yang X, Han L, et al. The relationship between DNA sequences and oligonucleotide-templated silver nanoclusters and their fluorescence properties [J]. Chemistry-A European Journal. 2014;20(4):1111-1115.
Ma JL, Yin BC, Ye BC. DNA template-regulated intergrowth of a fluorescent silver nanocluster emitter pair [J]. RSC Advances. 2015;5(119):98467-98471.
Zhou W, Zhu J, Fan D, et al. A multicolor chameleon DNA‐templated silver nanocluster and its application for ratiometric fluorescence target detection with exponential signal response [J]. Advanced Functional Materials. 2017; 27(46):1704092.
Fu Y, Zhang J, Chen X, et al. Silver nanomaterials regulated by structural competition of G-/C-Rich oligonucleotides [J]. Journal of Physical Chemistry C. 2011;115(21):10370-10379.
Li T, Zhang L, Ai J, et al. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device [J]. ACS Nano. 2011;5(8):6334-6338.
Tao G, Chen Y, Lin R, et al. How G-quadruplex topology and loop sequences affect optical properties of DNA-templated silver nanoclusters [J]. Nano Research. 2018;11(4):2237-2247.
Cui Q, Ma K, Shao Y, et al. Gap site-specific rapid formation of fluorescent silver nanoclusters for label-free DNA nucleobase recognition [J]. Analytica Chimica Acta. 2012;724:86-91.
Lhara T, Ishii T, Araki N, et al. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex [J]. Journal of the American Chemical Society. 2009;131(11): 3826-3827.
Li J, Jia X, Li D, et al. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices [J]. Nanoscale. 2013;5(13):6131-6138.
Fumiao Shen A, et al. Three-way junction-promoted recycling amplification for sensitive DNA detection using highly bright DNA-silver nanocluster as label-free output [J]. Talanta. 2020;206(C):120216-120216.
Xiaoxiao Hou. Preparation and Application of DNA Template-guided AgNCs [D]; 2018.
Ono A, Cao S, Togashi H, et al. Specific interactions between silver (I) ions and cytosine-cytosine pairs in DNA duplexes [J]. Chem Commun (Camb). 2008;39(39): 4825-4827.
Sengupta B, Springer K, Buckman JG, et al. DNA templates for fluorescent silver clusters and i-motif folding [J]. The Journal of Physical Chemistry C. 2015;113(45): 19518-19524.
Fu Y, Zhang J, Chen X, et al. Silver nanomaterials regulated by structural competition of G-/C-rich oligonucleotides [J]. Journal of the American Chemical Society. 2011;115(31):10370-10379.
Zhang P, Liu H, Li X, et al. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters [J]. Biosensors and Bioelectronics. 2017;87:1044-1049.
Chen J, Zhang X, Cai S, et al. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin a detection[J]. Biosensors & Bioelectronics, 2014, 57: 226-231.
Chen C, Shi J, Guo Y, et al. A novel aptasensor for malathion blood samples detection based on DNA-silver nanocluster [J]. Analytical Methods. 2018;10(16):1928-1934.
Zhou Z, Du Y, Dong S. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules [J]. Biosensors and Bioelectronics. 2011; 28(1):33-37.
Mills, Dawn M, Foguel, Marcos V, Martin, Christopher P, et al. Rapid detection of different DNA analytes using a single electrochemical sensor [J]. Sensors and Actuators. 2019;B293(AUG.):11-15.
Yue, Huang Ji, et al. Sensitive detection of chloramphenicol based on Ag-DNAzyme-mediated signal amplification modulated by DNA/metal ion interaction [J]. Biosensors and Bioelectronics; 2018.
A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme [J]. Analytica Chimica Acta. 2015;886:182- 187.
Jingwen A Li, et al. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin – Science Direct [J]. Food Chemistry;2021.
Cheng R, Liu S, Shi H, et al. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77 [J]. Journal of Hazardous Materials. 2017;373.
Miao M, Tian J, Luo Y, et al. Terminal deoxynucleotidyl transferase-induced DNAzyme nanowire sensor for colorimetric detection of lipopolysaccharides [J]. Sensors and Actuators B Chemical. 2017;256.
Tao X, He F, Liu X, et al. Detection of chloramphenicol with an aptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules [J]. Microchimica Acta. 2020; 187(12).
A, Chia Chen Chang, et al. Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles [J]. Biosensors and Bioelectronics. 2013;42(1):119-123.
Tomita Y, Morita Y, Suga H, et al. DNA module platform for developing colorimetric aptamer sensors [J]. Biotechniques. 2016;60(6):285.
Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chemical Communications. 2006(36):3780-3782.
Walker GT, Fraiser MS, Schram JL, et al. Strand displacement amplification-an isothermal, in vitro DNA amplification technique [J]. Nucleic Acids Research. 1992;20(7):1691-1696.
Wang T, Zhang Z, Li Y Y, et al. Amplified electrochemical detection of mecA gene in methicillin- resistant staphylococcus aureus based on target recycling amplification and isothermal strand- displacement polymerization reaction [J]. Sensors and Actuators B: Chemical. 2015;221:148-154.
Chen A, Gui G F, Zhuo Y, et al. Signal-off electrochemiluminescence biosensor based on Phi29 DNA polymerase mediated strand displacement amplification for microRNA detection [J]. Analytical Chemistry. 2015;87(12):6328-6334.
Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction [J]. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(43):15275-15278.
Zhang B, Liu BQ, Tang DP, et al. DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins [J]. Analytical Chemistry. 2012;84(12):5392-5399.
Huang JH, Gao X, Jia JJ, et al. Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions [J]. Analytical Chemistry. 2014;86(6):3209.
Wang R, Wang L, Xu X W, et al. An enzyme-free and label-free fluorescence biosensor for microRNA detection based on cascade amplification of DNAzyme-powered three-dimensional DNA walker and hybridization chain reaction [J]. Sensors and Actuators B: Chemical. 2018;268:287-292.
Yin P, Choi HMT, Calvert CR, et al. Programming biomolecular self-assembly pathways [J]. Nature. 2008;451(7176):318-322.
Tao F, Fang J, Guo YC, et al. A target-triggered biosensing platform for detection of HBV DNA based on DNA walker and CHA [J]. Analytical Biochemistry. 2018;554: 16-22.
Liu HY, Tian T, Zhang YH, et al. Sensitive and rapid detection of microRNAs using hairpin probes- mediated exponential isothermal amplification [J]. Biosensors and Bioelectronics. 2017;89:710-714.
-
Abstract View: 28 times
PDF Download: 11 times