Lead Anticancer Agents of Crinine Alkaloids: Cytotoxic, Caspase-3, and Anti-angiogenic Exploration

Taye Temitope Alawode *

Department of Chemistry, Federal University Otuoke, Bayelsa State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Several alkaloids with anticancer activities have been reported among the Crinum species. In this study, an in silico screening of crinine alkaloids was carried out to identify potential Caspase-3 activators and anti-angiogenic compounds. Thirty-one (31) crinine alkaloids were assessed for drug-likeness using the SwissADME online Web server. Nine (9) alkaloids, satisfying Lipinski’s rules for drug-likeness were selected and screened in silico for cytotoxic properties against cancer and normal cell lines using the Cell Line Cytotoxity Predictor (CLC-Pred). The alkaloids possessing drug-like properties and showing good selectivity towards cancer cell lines were evaluated for Caspase-3 activating and anti-angiogenic activities by docking with the Caspase-3 and VEGFR2 proteins, respectively. The binding energy of the compounds was compared with those of the standard drugs. Powelline, augustine, and undulatine possess drug-like properties and demonstrated good selectivity against lung cancer (A549) and oligodendroglioma (Hs683) cell lines. Among these three compounds, powelline had the best potential as a Caspase-3 stimulant and anti-angiogenic agent. Powelline, augustine, and undulatine are potential lead anticancer agents against human lung cancer and oligodendroglioma.

Keywords: Anti-angiogenic, cancer, caspase-3, crinine, cytotoxic


How to Cite

Alawode, T. T. (2023). Lead Anticancer Agents of Crinine Alkaloids: Cytotoxic, Caspase-3, and Anti-angiogenic Exploration. Asian Journal of Chemical Sciences, 13(5), 86–95. https://doi.org/10.9734/ajocs/2023/v13i5256

Downloads

Download data is not yet available.

References

Lin L, Yan L, Liu Y, Yuan F, Li H, Ni J,. Incidence and death in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the Global Burden of Disease Study. Journal of Hematology & Oncology 2019; 12:96. Available:https://doi.org/10.1186/s13045-019-0783-9

World Health Organization: Available:https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed April 24,2023.

Calderón-Montaño JM, Martínez-Sánchez SM, Jiménez-González V, Burgos-Morón E, Guillén-Mancina E, Jiménez-Alonso JJ, Díaz-Ortega P, García F, Aparicio A, López-Lázaro M. Screening for Selective Anticancer Activity of 65 Extracts of Plants Collected in Western Andalusia, Spain. Plants (Basel) 2021;10(10): 2193.

George BP, Chandran R, Abrahamse H, Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants. 2021;10:1455. DOI:https://doi.org/10.3390/antiox10091455

Bishayee A, Sethi G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin Semin Cancer Biol 2016;40(41):1–3. DOI:10.1016/j.semcancer.2016.08.006.

Pfeffer CM, Singh ATK. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018;19(2):448 (2018). DOI: 10.3390/ijms19020448.

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 1: 2015;5(4): a008656.

DOI:10.1101/cshperspect.a008656 Erratum in Cold Spring Harb Perspect Biol. 2015;7(4):a026716. DOI: 10.1101/cshperspect.a026716.

Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS. Contribution of Angiogenesis to Inflammation and Cancer. Frontiers in Oncology. Volume| Article 2019;9(1399). DOI: 10.3389/fonc.2019.01399.

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020;77(9): 1745–1770.

Guo S, Colbert LS, Fuller M, et al. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta Rev Cancer 2010;1806:108–21.

Stuttfeld E, Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life. 2009;61:915–22.

Holmes K, Roberts OL, Thomas AM, Cross MJ,. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition Cell Signal 2007;19:2003–12.

Refaat J, Kamel MS, Ramadan MA, Ali AA. Crinum; An Endless Source of Bioactive Principles: A Review. Part 1- Crinum Alkaloids: Lycorine-type Alkaloids. International Journal of Pharmaceutical Sciences and Research 2012;3(7):1883-1890.

Fennell C, Staden J. Crinum species in traditional and modern medicine Journal of Ethnopharmacology. 2001;78: 15-26. DOI: 10.1016/S0378-8741(01)00305-1.

Abebe B, Tadesse S, Hymete A, Bisrat D. Antiproliferative Effects of Alkaloids from the Bulbs of Crinum abyscinicum Hochst. ExA. Rich. Evid. Based Complement Alternat. Med. 2020;2020:2529730. DOI: 10.1155/2020/2529730

Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS., Gloriozova TA, Filimonov DA., Sastry NG, Poroikov, VV. CLC-Pred: A freely available webservice for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 25: 2018;13(1): e0191838. DOI: 10.1371/journal.pone.0191838

Desai TH, Joshi SV, In silico evaluation of apoptogenic potential and toxicological profile of triterpenoids. Indian J Pharmacol 2019;51(3):181-207. DOI: 10.4103/ijp.IJP_90_18

Chaudhary U, Gurung V , Pachakhan ST , Subin JA, Pokharel YR, Yadav PN. Evaluation of Anticancer Potential of N(4)-Alkyl Substituted 5-Methoxyisatin Thiosemicarbazones: Synthesis, Characterization and Molecular Docking. Asian Journal of Chemistry. 2023;35(3): 605-616.

Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835–44.

O’Boyle NM, Banck M, James CA et al. Discovery and Development of Sorafenib: a multikinase inhibitor for treating cancer. J. Cheminform. 2011;3:33. DOI:https://doi.org/10.1186/1758-2946-3-33.

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:270-277.

Wafa T, Mohamed K. Molecular docking study of COVID-19 main protease with clinically approved drugs. ChemRxiv; 2020. DOI:doi.org/10.26434/chemrxiv.12318689.v1.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 2012;64: 4−17.

Muchmore SW, Edmunds JJ, Stewart KD, Hajduk PJ. Cheminformatic Tools for Medicinal Chemists. Journal of Medicinal Chemistry 2010;53(13):4830-4841.

Pandev PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2015;4(1):00-00 DOI:10.1080/21688370.2015.1129476

Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood–brain barrier permeation. Therapeutic Delivery 2015;6(8):961-971.

Trujillo L, Bedoya J, Cortés N, Osorio EH, Gallego JC, Leivaz H, Castro D, Osorio E. Cytotoxic Activity of Amaryllidaceae Plants against Cancer Cells: Biotechnological, In Vitro, and In Silico Approaches. Molecules, 2023;28:2601. DOI:https://doi.org/10.3390/molecules28062601

Thandra KC, Barsouk A, Saginala K, Aluru, JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn) 2021;25(1): 45-52. DOI: 10.5114/wo.2021.103829

Urvay SE, Yucel B, Erdis E, Turan N. Prognostic Factors in Stage III Non-Small-Cell Lung Cancer Patients. Asian Pac J Cancer Prev. 2016;17(10):4693-4697. DOI: 10.22034/apjcp.2016.17.10.4693

Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 2017;19(5):1-88.

Wesseling P, van den Bent M, Perry A. Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):809-27.

Sebola TE, Uche-Okereafor NC, Mekuto L, Makatini MM, Green E, Mavumengwana VS. Antibacterial and anticancer activity and untargeted secondary metabolite profiling of crude bacterial endophyte extracts from Crinum macowanii Baker Leaves. Int. J. Microbiol. 2020;2020: 8839490.