Synthesis and Crystal Structure Studies of a New Complex of Co (III)-Schiff Base Derivative Derived from Isonicotinohydrazide

Babacar Diop *

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

Thierno Moussa Seck

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

Cheikh Ndoye

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

Ibrahima El-hadji Thiam

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

Ousmane Diouf

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

Farba Bouyagui Tamboura

Department of Chemistry, University Alioune DIOP de Bambey, Sénégal.

Pascal Retailleau

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay., 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.

Mohamed Gaye

Department of Chemistry, University Cheikh Anta DIOP de Dakar, Sénégal.

*Author to whom correspondence should be addressed.


Abstract

A new Co(III) complex prepared by the reaction of N'–(1–(pyridin–2 yl)ethylidene) isonicotinohydrazide (H2L) with Co(II) ion is reported in this paper. The H2L ligand is structurally characterized by elemental analysis, NMR, and infrared spectroscopies. The mononuclear complex [Co(HL)2]·Cl·3H2O (1), is characterized by infrared spectroscopy, elemental analysis, conductance, magnetic room temperature measurement and single X-ray diffraction. The complex crystallizes in the monoclinic system with space group P21/c. The parameters of the unit cell are a = 9.6818(3) Å; b = 25.1587(6) Å; c = 11.5481(3) Å;   β = 101.797(3) °; Z = 4; Rint = 0.0313 and wR(F2) = 0.0812. The asymmetric unit of the compound contains a discrete [Co(HL)2]+ cation one  free chloride anion and three uncoordinated water molecules. In the discrete cation one Co3+ ion two organic ligand molecules are present. The coordination polyhedron around the Co3+ center is best described as a distorted octahedral with CoN4O2 chromophore. The crystal structure of the complex is stabilized by intramolecular and intermolecular hydrogen bonds.

Keywords: Schiff base, isonicotinohydrazide, cobalt, X-ray diffraction, complex, mononuclear


How to Cite

Diop, B., Seck , T. M., Ndoye , C., Thiam , I. E.- hadji, Diouf , O., Tamboura , F. B., Retailleau , P., & Gaye, M. (2024). Synthesis and Crystal Structure Studies of a New Complex of Co (III)-Schiff Base Derivative Derived from Isonicotinohydrazide. Asian Journal of Chemical Sciences, 14(3), 15–26. https://doi.org/10.9734/ajocs/2024/v14i3306

Downloads

Download data is not yet available.

References

Betancourth JG, Castaño JA, Visbal R, Chaur MN. Versatility of the amino group in hydrazone-based molecular and supramolecular systems. European Journal of Organic Chemistry. 2022;28: e202200228. Available:https://doi.org/10.1002/ejoc.202200228

Bismillah AN, Aprahamian, I. Boron difluoride hydrazone (BODIHY) complexes: A new class of fluorescent molecular rotors. Journal of Physical Organic Chemistry. 2023;36:e4485. Available:https://doi.org/10.1002/poc.4485

Gao P, Wei Y. Efficient oxidative cyclization of N-acylhydrazones for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using t-BuOI under neutral conditions. Heterocycle Communcations. 2013;19:113–119. Available:https://doi.org/10.1515/hc-2012-0179

Küçük BH, Alhonaish A, Yıldız T, Güzel M. An efficient approach to access 2,5-disubstituted 1,3,4-oxadiazoles by oxidation of 2-arenoxybenzaldehyde N- acyl hydrazones with molecular iodine. Chemistry Select. 2022;7:e202201391. Available:https://doi.org/10.1002/slct.202201391

Pelipko VV, Gomonov KA. Formation of five- and six-membered nitrogen-containing heterocycles on the basis of hydrazones derived from α-dicarbonyl compounds (Microreview). Chemistry of Heterocycle Compounds. 2021;57:624–626. Available:https://doi.org 10.1007/s10593-021-02958-8

Morjan RY, Mkadmh AM, Beadham I, Elmanama AA, Mattar MR, Raftery J, Pritchard, RG, Awadallah AM, Gardiner JM. Antibacterial activities of novel nicotinic acid hydrazides and their conversion into N-acetyl-1,3,4-oxadiazoles. Bioorganic and Medicinal Chemistry. Letters. 2014;24:5796–5800. Available:https://doi.org/10.1016/j.bmcl.2014.10.029

Ţînţaş ML, Diac AP, Soran A, Terec A, Grosu I, Bogdan E. Structural characterization of new 2-aryl-5-phenyl-1,3,4-oxadiazin-6-ones and their N-aroylhydrazone precursors. Journal of Molecular Structure. 2014;1058:106–113. Available:https://doi.org/10.1016/j.molstruc.2013.11.005

Wani MY, Bhat AR, Azam A, Athar F. Nitroimidazolyl hydrazones are better amoebicides than their cyclized 1,3,4-oxadiazoline analogues: In vitro studies and Lipophilic efficiency analysis. European Journal of Medicinal Chemistry. 2013;64:190–199. Available:https://doi.org/10.1016/j.ejmech.2013.03.034

Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. Russian Journal of Bioorganic Chemistry. 2022;48:1123–1150. Available:https://doi.org/10.1134/s1068162022060085

Verma S, Lal S, Narang R, Sudhakar K. Quinoline hydrazide/hydrazone derivatives: Recent insights on antibacterial activity and mechanism of action. Chem Med Chem. 2023;18:e202200571. Available:https://doi.org/10.1002/cmdc.202200571

Lygaitis R, Getautis V, Grazulevicius JV. Hole-Transporting Hydrazones. Chemical Society Reviews. 2008;37:770–788. Available:https://doi.org/10.1039/B702406C

Rollas S, Küçükgüzel, SG. Biological activities of hydrazone derivatives. Molecules 2007;12:1910–1939. Available:https://doi.org/10.3390/12081910

Mohareb RM, Ibrahim RA, Moustafa HE. Hydrazide-hydrazones in the synthesis of 1,3,4-oxadiazine, 1,2,4-triazine and Pyrazole derivatives with antitumor activities. The Open Organic Chemistry Journal. 2010;4:8–14. Available:https://doi.org/10.2174/1874095201004010008

García-Ramírez VG, Suarez-Castro A, Villa-Lopez MG, Díaz-Cervantes E, Chacón-García L, Cortes-García CJ. Synthesis of novel acylhydrazone-oxazole hybrids and docking studies of sars-COV-2 main protease. Chemistry Proceedings. 2020;3:1. Available:https://doi.org/10.3390/ecsoc-24-08329

Aneja B, Khan NS, Khan P, Queen A, Hussain A, Rehman MT, Alajmi MF, El-Seedi HR, Ali S, Hassan MI, Abid M. Design, and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. European Journal of Medicinal Chemistry. 2019;163:840–852. Available:https://doi.org/10.1016/j.ejmech.2018.12.026

Salum LB, MascarelloA, Canevarolo RR, Altei WF, Laranjeira ABA, Neuenfeldt PD, Stumpf TR, Chiaradia-Delatorre LD, Vollmer LL, Daghestani HN, de Souza Melo CP, Silveira AB, Leal PC, Frederico MJS, Do Nascimento LF, Santos ARS, Andricopulo AD, Day BW, Yunes RA, Vogt A, Yunes JA, Nunes RJ. N-(1’-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and In vivo activity against acute lymphoblastic leukemia. European Journal of Medicinal Chemistry. 2015;96:504–518. Available:https://doi.org/10.1016/j.ejmech.2015.02.041

Govindaiah P, Dumala N, Mattan I, Grover P, Jaya Prakash M. Design, synthesis, biological and in silico evaluation of coumarin-hydrazone derivatives as tubulin targeted antiproliferative agents. Bioorganic Chemistry. 2019;91:103143. Available:https://doi.org/10.1016/j.bioorg.2019.103143

Sreenivasulu R, Reddy KT, Sujitha P, Kumar CG, Raju RR. Synthesis, antiproliferative and apoptosis induction potential activities of novel BIS (Indolyl) hydrazide-hydrazone derivatives. Bioorganic and Medicinal Chemistry. 2019;27:1043–1055. Available:https://doi.org/10.1016/j.bmc.2019.02.002

Sharma V, Kumar R, Bua S, Supuran CT, Sharma PK. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorganic Chemistry. 2019;85: 198–208. Available:https://doi.org/10.1016/j.bioorg.2019.01.002

Rohane SH, Chauhan AJ, Fuloria NK, Fuloria S. Synthesis and In vitro antimycobacterial potential of novel hydrazones of eugenol. Arabian Journal of Chemistry. 2020;13:4495–4504 Available:https://doi.org/10.1016/j.arabjc.2019.09.004

Siddique M, Bin Saeed A, Dogar NA, Ahmad S. Biological Potential of Synthetic Hydrazide Based Schiff Bases. Journal of Scientific Innovative Research. 2013; 2:651–657.

Available:extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.jsirjournal.com/Vol2Issue3017.pdf

Xia L, Xia Y.-F, Huang L.-R, Xiao X, Lou H.-Y, Liu T.-J, Pan W.-D, Luo H. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression In vitro and their structure–microbicidal activity relationship. European Journal of Medicinal Chemistry. 2015;97:83–93. Available:https://doi.org/10.1016/j.ejmech.2015.04.042

Hincapié-Otero MM, Joaqui-Joaqui A, Polo-Cerón D. Synthesis and characterization of four N-acylhydrazones as potential O,N,O donors for Cu2+: An experimental and theoretical study. Universitas Scientarum. 2021;26:193–215. Available:https://doi.org/10.11144/Javeriana.SC26-2.saco

Demurtas M, Baldisserotto A, Lampronti I, Moi D, Balboni G, Pacifico S, Vertuani S, Manfredini S, Onnis V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorganic Chemistry. 2019; 85:568–576. Available:https://doi.org/10.1016/j.bioorg.2019.02.007

Lis C, Rubner S, Roatsch M, Berg A, Gilcrest T, Fu D, Nguyen E, Schmidt A-M, Krautscheid H, Meiler J, Berg T. Development of Erasin: A chromone- based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Scientific Reports. 2017;7: 17390. Available:https://doi.org/10.1038/s41598-017-17600-x

Sun K, Peng J-D, Suo F-Z, Zhang T, Fu Y-D, Zheng Y-C, Liu H-M. Discovery of tranylcypromine analogs with an acylhydrazone substituent as LSD1 inactivators: Design, synthesis and their biological evaluation. Bioorganic and Medicinal Chemistry. Letters. 2017;27: 5036–5039. Available:https://doi.org/10.1016/j.bmcl.2017.10.003

Congiu C, Onnis V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorganic and Medicinal Chemistry. 2013;21:6592–6599. Available:https://doi.org/10.1016/j.bmc.2013.08.026

Cui Z, Li Y, Ling Y, Huang J, Cui J, Wang R, Yang X. New class of potent antitumor acylhydrazone derivatives containing furan. European Journal of Medicinal Chemistry. 2010;45:5576–5584. Available:https://doi.org/10.1016/j.ejmech.2010.09.007

Li Y, Yan W, Yang J, Yang Z, Hu M, Bai P, Tang M, Chen L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. European Journal of Medicinal Chemistry. 2018;152:516–526. Available:https://doi.org/10.1016/j.ejmech.2018.05.003

Socea L-I, Socea B, Saramet G, Barbuceanu S-F, Draghici C, Constantin VD, Olaru, OT. Synthesis and Cytotoxicity Evaluation of new 5H-dibenzo [a,d][7]annulen-5-yl acetylhydrazones. Revista de Chimie. 2015;66(8):1122–1127. Available:https://revistadechimie.ro/Articles.asp?ID=4591

Bernhardt PV. Coordination chemistry and biology of chelators for the treatment of iron overload disorders. Dalton Transactions. 2007;30:3214–3220. Available:https://doi.org/10.1039/b708133b

He H, Xia H, Xia Q, Ren Y, He H. Design and optimization of N-acylhydrazone pyrimidine derivatives as E. coli PDHc E1 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorganic and Medicinal Chemistry. 2017;25:5652–5661. Available:https://doi.org/10.1016/j.bmc.2017.08.038

Jin Y-X, Zhong A-G, Ge C-H, Pan F-Y, Yang J-G, Wu Y, Xie M, Feng H-W. A novel difunctional acylhydrazone with isoxazole and furan heterocycles: Syntheses, structure, spectroscopic properties, antibacterial activities and theoretical studies of (E)-N′-(furan-2-ylmethylene)-5-methylisoxazole-4-carbohydrazide. Journal of Molecular Structure. 2012;1010:190–196. Available:https://doi.org/10.1016/j.molstruc.2011.06.042

Jin Y-X, Zhong A-G, Zhang Y, Pan F-Y. Synthesis, crystal structure, spectroscopic properties, antibacterial activity and theoretical studies of a novel difunctional acylhydrazone. Journal of Molecular Structure. 2011;1002:45–50.

Guilherme FD, Simonetti JÉ, Folquitto LRS, Reis ACC, Oliver JC, Dias ALT, Dias DF, Carvalho DT, Brandão GC, de Souza TB. Synthesis, chemical characterizeation, and antimicrobial activity of new acylhydrazones derived from carbohydrates. Journal of Molecular Structure. 2019;1184:349–356. Available:https://doi.org/10.1016/j.molstruc.2019.02.045

Reis, D, Despaigne, A, Silva, J, Silva, N, Vilela, C, Mendes, I, Takahashi, J, Beraldo, H. Structural Studies and Investigation on the Activity of Imidazole-Derived Thiosemicarbazones and Hydrazones against Crop-Related Fungi. Molecules 2013;18:12645–12662. Available:https://doi.org/10.3390/molecules181012645

Tian B, He M, Tang S, Hewlett I, Tan Z, Li J, Jin Y, Yang M. Synthesis, and antiviral activities of novel acylhydrazone derivatives targeting HIV-1 capsid protein. Bioorganic and Medicinal Chemistry Letters. 2009;19:2162–2167. Available:https://doi.org/10.1016/j.bmcl.2009.02.116

Wang Z, Xie D, Gan X, Zeng S, Zhang A, Yin L, Song B, Jin L, Hu D. Synthesis, antiviral activity, and molecular docking study of trans-ferulic acid derivatives containing acylhydrazone moiety. Bioorganic and Medicinal Chemistry Letters. 2017;27:4096–4100. Available:https://doi.org/10.1016/j.bmcl.2017.07.038

Inam A, Siddiqui SM, Macedo TS, Moreira DRM, Leite ACL, Soares MBP, Azam A. Design, synthesis, and biological evaluation of 3-[4-(7-chloro-quinolin-4-yl)-piperazin-1-yl]-propionic acid hydrazones as antiprotozoal agents. European Journal of Medicinal Chemistry. 2014;75:67–76. Available:https://doi.org/10.1016/j.ejmech.2014.01.023

Melnyk P, Leroux V, Sergheraert C, Grellier P. Design, synthesis, and In vitro antimalarial activity of an acylhydrazone library. Bioorganic and Medicinal Chemistry Letters. 2006;16: 31–35. Available:http://dx.doi.org/10.1016/j.bmcl.2005.09.058

Dos Santos Filho JM, de Queiroz e Silva DMA, Macedo TS, Teixeira HMP, Moreira DRM, Challal S, Wolfender J-L, Queiroz EF, Soares MBP. Conjugation of N–acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorganic and Medicinal Chemistry. 2016;24:5693–5701.

Available:https://doi.org/10.1016/j.bmc.2016.09.013

Shakdofa MME, Shtaiwi MH, Morsy N, Abdel-rassel TMA. Metal complexes of hydrazones and their biological, analytical and catalytic applications: A review. Main Group Chemistry. 2014;13: 187–218 Available:https://doi.org/:10.3233/MGC-140133

Dos Santos Filho, JM, Leite ACL, De Oliveira BG, Moreira DRM, Lima MS, Soares MBP, Leite LFCC. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorganic and Medicinal Chemistry. 2009;17:6682–6691 Available:https://doi.org/10.1016/j.bmc.2009.07.068

Jacomini AP, Silva MJV, Silva RGM, Gonçalves DS, Volpato H, Basso EA, Paula FR, Nakamura CV, Sarragiotto MH, Rosa, FA. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone-N-acylhydrazone-(bi)thiophene hybrids. European Journal of Medicinal Chemistry. 2016;124:340–349. Available:https://doi.org/10.1016/j.ejmech.2016.08.048

Bezerra-Netto HJC, Lacerda DI, Miranda ALP, Alve, HM, Barreiro EJ, Fraga CAM. Design and synthesis of 3,4-methylenedioxy-6-nitrophenoxyacetylhydrazone derivatives obtained from natural safrole: New lead-agents with analgesic and antipyretic properties. Bioorganic and Medicinal Chemistry. 2006;14:7924–7935. Available:https://doi.org/10.1016/j.bmc.2006.07.046

Duarte CD, Tributino JLM, Lacerda DI, Martins MV, Alexandre-Moreira MS, Dutra F, Bechara EJH, De-Paula FS, Goulart MOF, Ferreira J, Calixto JB, Nunes MP, Bertho AL, Miranda ALP, Barreiro EJ, Fraga CAM. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. Bioorganic and Medicinal Chemistry. 2007;15:2421–2433.

Available:https://doi.org/10.1016/j.bmc.2007.01.013

Hernández P, Cabrera M, Lavaggi ML, Celano L, Tiscornia I, Rodrigues da Costa T, Thomson L, Bollati-Fogolín M, Miranda ALP, Lima LM, Barreiro EJ, González M, Cerecetto H. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorganic and Medicinal Chemistry. 2012;20:2158–2171. Available:https://doi.org/10.1016/j.bmc.2012.01.034

Guimarães ET, dos Santos TB, Silva DKC, Meira CS, Moreira DRM, Da Silva TF, Salmon D, Barreiro EJ, Soares MBP. Potent immunosuppressive activity of a phosphodiesterase-4 inhibitor N-acylhydrazone in models of lipopolysaccharide-induced shock and delayed-type hypersensitivity reaction. International Immunopharmacology. 2018;65:108–118. Available:https://doi.org/10.1016/j.intimp.2018.09.047

Özer ÖE, Tan UO, Ozadali K, Küçükkılınç T, Balkan A, Uçar G. Synthesis, molecular modeling and evaluation of novel N′-2-(4-benzylpiperidin-/piperazin-1-yl) acylhydrazone derivatives as dual inhibitors for cholinesterases and Aβ aggregation. Bioorganic and Medicinal Chemistry. Letters. 2013;23:440–443. Available:https://doi.org/10.1016/j.bmcl.2012.11.064

Parlar S, Sayar G, Tarikogullari AH, Karadagli SS, Alptuzun V, Erciyas E, Holzgrabe U. Synthesis, bioactivity and molecular modeling studies on potential anti-Alzheimer piperidinehydrazide-hydrazones. Bioorganic Chemistry. 2019;87:888–900. Available:https://doi.org/10.1016/j.bioorg.2018.11.051

Anastassova NO, Yancheva DY, Mavrova AT, Kondeva-Burdina MS, Tzankova VI, Hristova-Avakumova NG, Hadjimitova VA. Design, synthesis, antioxidant properties and mechanism of action of new N,N′-disubstituted benzimidazole-2-thione hydrazone derivatives. Journal of Molecular Structure. 2018;1165:162–176. Available:https://doi.org/10.1016/j.molstruc.2018.03.119

Socea LI, Visan DC, Barbuceanu SF, Apostol TV, Bratu OG, Socea B. The Antioxidant Activity of Some Acylhydrazones with Dibenzo annulene Moiety. Revista de Chimie. 2018;69:795–797. Available:https://doi.org/10.37358/RC.18.4.6202

Tariq Q-N, Malik S, Khan A, Naseer MM, Khan SU, Ashraf A, Ashraf M, Rafiq M, Mahmood K, Tahir MN, Shafia Z. Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies. Bioorganic Chemistry. 2019;84: 372–383. Available:https://doi.org/10.1016/j.bioorg.2018.11.053

Shakdofa MME, Shtaiwi MH, Morsy N, Abdel-rassel TMA. Metal complexes of hydrazones and their biological, analytical and catalytic applications: A review. Main Group Chem. 2014;13:187–218. Available:https://doi.org/:10.3233/MGC-140133

Shaikh I, Jadeja RN, Patel R, Mevada V, Gupta VK. 4 Acylhydrazone-5-Pyrazolones and their Zinc (II) Metal Complexes: Synthesis, Characterization, Crystal Feature and Antimalarial Activity J. Mol. Struct. 2021;1232:130051. Available:https://doi.org/10.1016/j.molstruc.2021.130051

Huang D-S, Liu X-R, Zhao S-S, Yang Z-W. Crystal structures of three transition metal complexes with salicylaldehyde-4-hydroxy phenylacetyl acylhydrazone and their interactions with CT-DNA and BSA, Polyhedron. 2022;211(1):115516. Available:https://doi.org/10.1016/j.poly.2021.115516

Huang X, Yan S-Y, Chen Y-M, Zhang D-S, Huang C, Zhu B-X, Lu J-H. Synthesis, structures, and gas adsorption properties of Hg (II) and Cd (II) complexes constructed from two acylhydrazone ligands with multiple coordination sites Inorganica Chimica Acta. 2023;555:121588. Available:https://doi.org/10.1016/j.ica.2023.121588

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-341.

Available:https://doi.org/10.1107/S0021889808042726

Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica. 2015;A71(1):3-8. Available:https://doi.org/10.1107/S2053273314026370

Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallographica. 2015;C71(1):3-8. Available:https://doi.org/10.1107/S2053229614024218

Farrugia LJ. Win GX and ORTEP for Windows: An update. Journal of Applied Crystallography. 2012;45:849-854. Available:https://doi.org/10.1107/S002188981202911

Tariq Q-N, Malik S, Khan A, Naseer MM, Khan SU, Ashraf A, Ashraf M, Rafiq M, Mahmood K, Tahir MN, Shafia Z. Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies. Bioorganic Chemistry. 2019;84:372–383. Available:https://doi.org/10.1016/j.bioorg.2018.11.053

Kuriakose D, Kurup MRP. Crystal structures and supramolecular architectures of ONO donor hydrazone and solvent exchangeable dioxidomolybdenum (VI) complexes derived from 3,5-diiodosalicyaldehyde-4-methoxybenzoylhydrazone: Hirshfeld surface analysis and interaction energy calculations, Polyhedron. 2019;170:749–761. Available:https://doi.org/10.1016/j.poly.2019.06.041

Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews. 1971;7(1):81-122. Available:https://doi.org/10.1016/S0010-8545(00)80009-0

Mathews NA, Jose A, Kurup MRP. Synthesis and characterization of a new aroylhydrazone ligand and its cobalt(III) complexes: X-ray crystallography and In vitro evaluation of antibacterial and antifungal activities, Journal of Molecular Structure. 2019;1178: 544–553 . Available:https://doi.org/10.1016/j.molstruc.2018.10.061

Das M, Chattopadhyay S. Synthesis, and structures of two cobalt (III) complexes with N4 donor ligands: Isolation of a unique bishemiaminal ether ligand as the metal complex, Polyhedron. 2013;50: 443–451. Available:http://dx.doi.org/10.1016/j.poly.2012.11.025

Buvaylo EA, Kasyanova KA, Yu O. Vassilyeva BW. Skelton. Crystal structure of bis{4-bromo-2-[(carbamimidamidoimino)-methyl]phenolato-κ3N,N′,O}cobalt (III) nitrate dimethyl formamide monosolvate, Acta Crystallographica. 2016;E72:907–911. Available:https://doi.org/10.1107/S2056989016008690