Molecular Dynamics Simulation of the Electrochemical Cell Design for All- vanadium Redox Flow Battery

Anant Babu Marahatta *

Department of Chemistry, Amrit Science Campus, Tribhuvan University, Kathmandu, Nepal and Engineering Chemistry and Applied Science Research Unit, Kathford International College of Engineering and Management (Affiliated to Tribhuvan University), Kathford International Education and Research Foundation, Lalitpur, Nepal.

*Author to whom correspondence should be addressed.


Abstract

Being the most potential battery candidate for the electrical grids connections due to having promising electrochemical energy storing abilities, vanadium redox flow battery (VRFB) is widely recognized state-of-the-art technology in renewable energy sectors. Despite its uniqueness of utilizing "all-vanadium" redox couples as the most prospective electrolyte materials, and their conspicuous technological functionalizations, the research works concentrated into its internal operational mechanisms of the cell at both ideal & different state-of-charges are still in the primitive stage. This MD simulation based theoretical insights aiming at revealing benchmark quantitative information on the interfacial micro structures around its Nafion-117 type proton exchange membrane, the intense hydration affinities of its adjacent state bare Vn+ ions, and the closed proximity around the H2O, H3O+, & Nafion-SO3-, etc. at nanometer scale would be a stepping-stone to its technological advancement. The general results presented here illuminate that the VRFB-electrolyte hosting H2O molecules and protons in Hydronium (H3O+), Eigen (H5O2+), & Zundel (H9O3+) states are distributed in a pattern identical to that in a purely bulk water system, and are dynamically used up for exhibiting facile proton conduction. Besides this, the significant departures of the SO3- units of the Nafion-117 at water content (l) = 22 predicted herein confirms its experimentally observed feature of easy accommodating H2O, H3O+, & Vn+ in between them; elucidating the reasons behind its atypical proton conductivity & ionic mobility rates under wet conditions. The MD trajectories based radial distribution function (RDF) predicted Vn+- OH2 radial distances validate the extreme hydration affinities of the bare adjacent Vn+ ions plus their stabilizing propensities with free H2O molecules as established earlier by the DFT based quantum mechanical method. 

Keywords: VRFB, Nafion, Radial Distribution Functions (RDF), Vanadium-hydration shells


How to Cite

Marahatta , A. B. (2023). Molecular Dynamics Simulation of the Electrochemical Cell Design for All- vanadium Redox Flow Battery. Asian Journal of Chemical Sciences, 13(1), 1–23. https://doi.org/10.9734/ajocs/2023/v13i1229

Downloads

Download data is not yet available.

References

Madan RD. Modern Inorganic Chemistry, S. Chand & Company Ltd.: New Delhi; 1997.

Krakowiak J, Lundberg D, Persson I, A Coordination Chemistry Study of Hydrated and Solvated Cationic Vanadium Ions in Oxidation States +III, +IV, and +V in Solution and Solid State, Inorg. Chem. 2012;51(18):9598–9609. Available:https://pubs.acs.org/doi/full/10.1021/ic300202f

Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010; 82(10):1901–1917. Available:https://publications.iupac.org/pac/82/10/1901/index.html

Yamamura T, Marahatta AB, Yoshida S, Tanno N, Vanadium Redox Flow Battery, WIPO (PCT) Patent WO2016158295A1; 2016. Available:https://patents.google.com/patent/WO2016158295A1/ru

Yamamura T, Marahatta AB, Yoshida S, Tanno N, Vanadium Redox Flow Battery, Japan Patent JP2016186853A; 2015. Available:https://patents.google.com/patent/JP2016186853A/ja

Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M, Vanadium-an element of atypical biological significance, Toxicology Letters. 2004; 150(2):135-143. Available:http://www1.udel.edu/chem/polenova/VHPO/Vanadium_BIolSignif_ToxicLett 2004.pdf

Rowley AF. The blood cells of the sea squirt, Ciona intestinalis: Morphology, differential counts, and in vitro phagocytic activity, J. Inv. Pathology. 1981; 37(1): 91-100. Available:https://www.sciencedirect.com/science/article/abs/pii/0022201181900604

Pessoa JC, Etcheverry S, Gambino D, Vanadium compounds in medicine, Coord. Chem. Rev. 2015; 301:24-48. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094629/

Bishayee A, Waghray A, Patel MA, Chatterjee M, Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence, Cancer Lett. 2010; 294 (1):1-12. Available:https://pubmed.ncbi.nlm.nih.gov/20206439/

Bhattacharya PK, Water flooding in the proton exchange membrane fuel cell, Directions. 2015;15(1): 24-33. Available:https://www.sciencetheearth.com/uploads/2/4/6/5/24658156/waterfloodingprotonexchangemembrane.pdf

Kurbatova LD, Kurbatov DI, Vanadium (V) complexes in Sulfuric Acid Solutions, Russ. J. Inorg. Chem. 2006; 51: 841–843. Available:https://link.springer.com/article/10.1134/S0036023606050275

Nechay BR, Mechanisms of Action of Vanadium, Ann. Rev. Pharmacol. Toxicol. 1984;24:501-524. Available:https://www.annualreviews.org/doi/abs/10.1146/annurev.pa.24.040184.002441

Rehder D, The coordination chemistry of vanadium as related to its biological functions, Coord. Chem. Rev. 1999;182(1):297322. Available:https://www.sciencedirect.com/science/article/abs/pii/S0010854598001945

Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z, Hu JZ, Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteries, J. Pow. Sources 2011; 196(7): 3669-3672. Available:https://www.sciencedirect.com/science/article/abs/pii/S0378775310021178

Marahatta AB, Coordination Chemistry of Vanadium Aquo Complex Ions in Oxidation States +II, +III, +IV, and +V: A Hybrid-Functional DFT Study, Int. J. Prog. Sci. Tech. 2020; 24(1): 645-661. Available:https://ijpsat.org/index.php/ijpsat/article/download/2496/1543

Marahatta AB, DFT Study on Electronic Charge Distribution and Quantum−Chemical Descriptors for the Kinetic Stability of Vanadium Aquo Complex Ions [V(H2O)6]2+ and [V(H2O)6]3+, Int. J. Prog. Sci. Tech. 2020;22(1): 6781. Available:https://ijpsat.org/index.php/ijpsat/article/view/2006/1132

Marahatta AB, Towards Understanding the Stabilities of Hydrated Vanadium (V) Complex Ions and the Pathway of V2O5 Precipitation in Catholyte Solution of Vanadium Redox Flow Battery, Int. J. Prog. Sci. Tech. 2020;20(2): 348364. Available:https://ijpsat.org/index.php/ijpsat/article/view/1805/1020

Bühl M, Kabrede H, Geometries of Transition-Metal Complexes from Density-Functional Theory, J. Chem. Theory Comput. 2006;2(5):1282-1290. Available:https://pubs.acs.org/doi/abs/10.1021/ct6001187

Allinger NL, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, J. Am. Chem. Soc. 1977; 99(25):8127– 8134. Available:https://pubs.acs.org/doi/10.1021/ja00467a001

(b) Sprague JT, Tai JC, Yuh Y, Allinger NL, The MMP2 calculational method, J. Comput. Chem. 1987; 8:581–603. Available:https://onlinelibrary.wiley.com/doi/10.1002/jcc.540080504

(a) Weiner SJ, Kollman PA, Case DA, Singh UC, Ohio C, Algona G.; Profeta Jr. S, Weiner PJ, A Study of thermal decomposition in cellulose by molecular dynamics simulation, Am. Chem. Soc. 1984; 106:765–784. Available:https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/journal/paperinformation.aspx?paperid=503

(b) Weiner SJ, Kollmann PA, Nguyen DT, Case DA, An all atom force field for simulations of proteins and nucleic acids, J. Comput. Chem. 1986; 7(2):230–252. Available:https://pubmed.ncbi.nlm.nih.gov/29160584/

Mayo SL, Olafson BD, Goddard WA, DREIDING: A Generic Force Field for Molecular Simulations, J. Phys. Chem. 1990; 94:88978909. Available:http://dx.doi.org/10.1021/j100389a010

Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders JM, Haque I, Mobley LD, Lambrecht SD, DiStasio AR, Gordon MH, Clark GNI, Johnson ME, Gordon HT, Current Status of the AMOEBA Polarizable Force Field, J. Phys. Chem. B. 2010; 114(8): 2549–2564. Available:https://pubmed.ncbi.nlm.nih.gov/20136072/

Ren P, Ponder JW, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, J. Phys. Chem. B. 2003;107(24): 5933–5947. Available:https://pubs.acs.org/doi/abs/10.1021/jp027815+

Levitt M, Hirshberg M, Sharon R, Laidig KE, Daggett V, Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution, J. Phys. Chem. B 1997; 101(25): 5051-5061. Available:https://doi.org/10.1021/jp964020s

Walbran S, Kornyshev AA, Proton transport in polarizable water, J. Chem. Phys. 2001;114:10039-10048. Available:https://aip.scitation.org/doi/10.1063/1.1370393

Spreiter Q, Walter M, Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields, J. Comp. Phy. 1999; 152(1):102-119. Available:https://www.sciencedirect.com/science/article/pii/S002199919996237X

Martys NS, Mountain RD, Velocity Verlet algorithm for dissipative- particle-dynamics-based models of suspensions, Phys. Rev. E 1999;59(3): 3733–3736. Available:https://journals.aps.org/pre/abstract/10.1103/PhysRevE.59.3733

Grubmüller H, Heller H, Windemuth A, Schulten K, Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions, Molecular Simulation 1991; 6:121-142. Available:https://www.tandfonline.com/doi/abs/10.1080/08927029108022142

Dorenbos G, Suga Y, Simulation of equivalent weight dependence of Nafion morphologies and predicted trends regarding water diffusion, J. Memb. Science 2009; 330(1-2):5-20. Available:https://www.sciencedirect.com/science/article/abs/pii/S0376738808010119

Humphrey W, Dalke A, Schulten K, VMD: visual molecular dynamics, J. Mol. Graph. 1996; 14(1):33(8):27-8. Available:https://pubmed.ncbi.nlm.nih.gov/8744570/

(a) Jang SS, Molinero V, Çaǧın T, Goddard WA, Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence, J. Phys. Chem. B 2004; 108(10): 31493157.

Available:https://pubs.acs.org/doi/abs/10.1021/jp036842c

(b) Karo J, Aabloo A , Thomas JO, Brandell D, Molecular Dynamics Modeling of Proton Transport in Nafion and Hyflon Nanostructures, J. Phys. Chem. B 2010; 114:6056–6064 Available:https://pubs.acs.org/doi/10.1021/jp903288y

Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K, Using VMD: An Introductory Tutorial, Current Protocols in Bioinformatics 2008; 5.7.15.7.48. Available:https://pubmed.ncbi.nlm.nih.gov/19085979/

Marahatta AB, Advanced Computer Graphics Aided Molecular Visualization And Manipulation Softwares: The Hierarchy of Research Methodologies, Int. J. Prog. Sci. Tech. 2023; 36(2):136 160. Available:https://ijpsat.org/index.php/ijpsat/article/view/4756New

Hildebrand PW, Rose AS, Tiemann JKS, Bringing Molecular Dynamics Simulation Data into View, Trends Biochem. Sci. 2019; 44(11):902913. Available:https://pubmed.ncbi.nlm.nih.gov/31301982/

VMD User's Guide (version 1.9.3); 2016. Available:https://www.ks.uiuc.edu/Research/vmd/current/ug.pdf

Kadau K, Germann TC, Lomdahl PS, Holian BL, Microscopic view of structural phase transitions induced by shock waves, Science 2002; 296:1681-1684. Available:https://pubmed.ncbi.nlm.nih.gov/12040192/

Ismail AE, Greathouse JA, Crozier PS, Foiles SM, Electron-ion coupling effects on simulations of radiation damage in pyrochlore waste forms, J. Phys. Condens. Mat. 2010;22(22):225405-225412. Available:https://pubmed.ncbi.nlm.nih.gov/21393744/

Vemparala S, Karki BB, Kalia RK, Nakano A, Vashishta P, Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers, J. Chem. Phys. 2004;121(9):4323–4330. Available:https://pubmed.ncbi.nlm.nih.gov/15332982/

Senjaya D, Supardi A, Zaidan A, Theoretical formulation of amorphous radial distribution function based on wavelet transformation, AIP Conference Proceedings, 2020;2314:020001. Available:https://aip.scitation.org/doi/abs/10.1063/5.0034410

Mansoori GA, Radial Distribution Functions and their Role in Modeling of Mixtures Behavior, Fluid Phase Equilibria 1993; 87:122. Available:https://www.sciencedirect.com/science/article/abs/pii/037838129385015E

Xuelong W, Sha T, Qing YX, Enyuan H, Pair distribution function analysis: Fundamentals and application to battery materials, Chinese Physics B 2020; 29(2): 028802. Available:https://iopscience.iop.org/article/10.1088/1674-1056/ab6656

Marahatta AB, Quantum−Mechanical Investigation of Chemical Energetics and Electronic Stabilities of Microhydrated Protons [H+(H2O)n], Int. J. Prog. Sci. Tech. 2020; 22(2): 290303. Available:https://ijpsat.org/index.php/ijpsat/article/view/2006

Feng C, Li Y, Qu K, Zhang Z, Mechanical behavior of a hydrated perfluorosulfonic acid membrane at meso and nano scales, RSC Advances 2019; 9(17): 9594-9603. Available:https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra00745h

Guccini V, Carlson A, Yu S, Lindbergh G, Lindström RW, Alvarez GS, Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells, J. Mater. Chem. A, 2019; 7: 2503225039. Available:https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta04898g

Vijayakumar M, Govind N, Li B, Wei X, Nie Z, Thevuthasan S, Sprenkle V, Wang W, Aqua-vanadyl ion interaction with Nafion® membranes, Front. Energy Res. 2015; 3(10):1-5. Available:https://www.frontiersin.org/articles/10.3389/fenrg.2015.00010/full

Marahatta AB, Coordination Chemistry of Vanadium Aquo Complex Ions in Oxidation States +II, +III, +IV, and +V: A Hybrid-Functional DFT Study, Int. J. Prog. Sci. Tech. 2020; 24(1): 645-661. Available:https://ijpsat.org/index.php/ijpsat/article/view/2496

Hinkle KR, Jameson CJ, Murad S, Transport of Vanadium and Oxovanadium Ions Across Zeolite Membranes: A Molecular Dynamics Study, J. Phys. Chem. C 2014;118(41): 23803-23810. Available:https://pubs.acs.org/doi/abs/10.1021/jp507155s