Lactic Acid-Proline Solvent Pretreatment of CS: Effects of Process Variables on Glucan, Xylan, and Lignin Composition

Onyelucheya, C. M. *

Department of Chemical Engineering, Federal University of Technology, Owerri, Imo State, P.M.B. 1526, Nigeria.

Nwabanne, J. T.

Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

The aim of this study is to investigate the effect of temperature, duration, and water dilution on the composition of glucan, xylan, and lignin in cowpea shells (CS) pretreated with a neat and diluted Lactic acid-proline solvent. The composition of glucan, xylan, and lignin was analyzed using the NREL method. The highest xylan removal (12%) was achieved after a 6-hour pretreatment at 150°C, while 11.35% lignin removal was observed after 5 hours at the same temperature. The most significant increase in glucan content, reaching 78.3 %, was observed after 4 hours at 150°C using a 2.5% (w/w) water-diluted solvent. Comparing the effect of the neat solvents and diluted solvents it can be concluded that while the neat solvent promoted the dissolution of xylan and lignin, the addition of water preserved glucan from the harshness of the pretreatment. Therefore, the decision to dilute a natural deep eutectic solvent before its application in biomass pretreatment depends on the desired product from biomass fractionation (lignin or a carbohydrate-rich material) and pretreatment temperature. These findings provide a foundation for further investigations into optimizing the entire process.

Keywords: Pretreatment, CS, natural deep eutectic solvent, biomass, lactic acid, proline


How to Cite

Onyelucheya, C. M., & Nwabanne, J. T. (2023). Lactic Acid-Proline Solvent Pretreatment of CS: Effects of Process Variables on Glucan, Xylan, and Lignin Composition. Asian Journal of Chemical Sciences, 13(6), 184–192. https://doi.org/10.9734/ajocs/2023/v13i6272

Downloads

Download data is not yet available.

References

United Nations Environment Programme. Converting Waste Agricultural Biomass into a Resource Compendium of Technologies. 2009:1-441.

Babu S, Rathore SS, Singh R, Kumar S, Singh VK, Yadav S, et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresource Technology. 2022:127566. DOI: 10.1016/j.biortech.2022.127566

Souza MAd, Vilas-Boas IT, Leite-da-Silva JM, Abrahão PdN, Teixeira-Costa BE, Veiga-Junior VF. Polysaccharides in agro-industrial biomass residues. Polysaccharides.2022;3(1):95-120. DOI:https://doi.org/10.3390/polysaccharides3010005

Anukam A, Berghel J. Biomass pretreatment and characterization: a review. Biotechnological applications of biomass. 2021:1-17. DOI: 10.5772/intechopen.93607

Choi YH, Van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, et al. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiology. 2011;156(4):1701-5. DOI: 10.1104/pp.111.178426

Krisanti E, Terahadi F, Fauzia F, Putri S. Alcohol-based natural deep eutectic solvents (NADES) as green solvents for extraction of mangostins from Garcinia mangostana pericarp. Planta Medica. 2015;81(16):PW_163. DOI:10.1055/s-0035-1565787

Owczarek K, Szczepanska N, Plotka-Wasylka J, Rutkowska M, Shyshchak O, Bratychak M, et al. Natural deep eutectic solvents in extraction process. Chemistry & Chemical Technology. 2016;10(4):601-6.

Abbott AP, Harris RC, Ryder KS, D'Agostino C, Gladden LF, Mantle MD. Glycerol eutectics as sustainable solvent systems. Green Chemistry. 2011;13(1):82-90. DOI: https://doi.org/10.1039/C0GC00395F

Li A-L, Hou X-D, Lin K-P, Zhang X, Fu M-H. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. Journal of Bioscience and Bioengineering. 2018;126(3):346-54. DOI: 10.1016/j.jbiosc.2018.03.011

Zhang C-W, Xia S-Q, Ma P-S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource technology. 2016;219:1-5. DOI:https://doi.org/10.1016/j.biortech.2016.07.026

Thi S, Lee KM. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource technology. 2019;282:525-9. DOI: 10.1016/j.biortech.2019.03.065.

Su Y, Huang C, Lai C, Yong Q. Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresource Technology. 2021;321:124471. DOI: 10.1016/j.biortech.2020.124471

Shen X-J, Wen J-L, Mei Q-Q, Chen X, Sun D, Yuan T-Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry. 2019;21(2) :275-83. DOI:https://doi.org/10.1039/C8GC03064B

Husanu E, Mero A, Rivera JG, Mezzetta A, Ruiz JC, D’Andrea F, et al. Exploiting Deep Eutectic Solvents and Ionic Liquids for the Valorization of Chestnut Shell Waste. ACS Sustainable Chemistry & Engineering. 2020;8(50):18386-99. DOI: 10.1021/acssuschemeng.0c04945

Kumar AK, Shah E, Patel A, Sharma S, Dixit G. Physico-chemical characterization and evaluation of neat and aqueous mixtures of choline chloride+ lactic acid for lignocellulosic biomass fractionation, enzymatic hydrolysis and fermentation. Journal of Molecular Liquids. 2018; 271:540-9. DOI:https://doi.org/10.1016/j.molliq.2018.09.032

Abedi E, Hashemi S. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 2020;6(10):e04974. DOI: 10.1016/j.heliyon.2020.e04974.

Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends in plant science. 2010;15(2):89-97. DOI: 10.1016/j.tplants.2009.11.009

FAO. Crops and livestock products 2021 [cited 2022 8, January].

Available:https://www.fao.org/faostat/en/#data/QCL.

Kemausuor F, Kamp A, Thomsen ST, Bensah EC, Østergård H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resources, Conservation and Recycling. 2014;86:28-37. DOI: 10.1016/j.resconrec.2014.01.007

Jekayinfa SO, Orisaleye JI, Pecenka R. An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources. 2020;9(8):92. DOI:https://doi.org/10.3390/resources9080092

New EK, Wu TY, Lee CBTL, Poon ZY, Loow Y-L, Foo LYW, et al. Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Safety and Environmental Protection. 2019;123:190-8. DOI: 10.1016/j.psep.2018.11.015

Dai Y, Witkamp G-J, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chemistry. 2015; 187:14-9. DOI:https://doi.org/10.1016/j.foodchem.2015.03.123

Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. Journal of the American chemical society. 2002;124(18):4974-5. DOI:https://doi.org/10.1021/ja025790m

Francisco M, Van Den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chemistry. 2012;14(8):2153-7. DOI:https://doi.org/10.1039/C2GC35660K

Dai Y, Van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta. 2013;766:61-8. DOI: 10.1016/j.aca.2012.12.019

Kumar N, Gautam R, Stallings JD, Coty GG, Lynam JG. Secondary agriculture residues pretreatment using deep eutectic solvents. Waste and Biomass Valorization. 2021;12:2259-69. DOI: 10.1007/s12649-020-01176-1

Procentese A, Rehmann L. Fermentable sugar production from a coffee processing by-product after deep eutectic solvent pretreatment. Bioresource Technology Reports. 2018;4:174-80. DOI:https://doi.org/10.1016/j.biteb.2018.10.012

Hou X-D, Feng G-J, Ye M, Huang C-M, Zhang Y. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresource technology. 2017;238:139-46. DOI: 10.1016/j.biortech.2017.04.027

Kumar AK, Parikh BS, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research. 2016;23(10): 9265-75. DOI:https://doi.org/10.1007/s11356-015-4780-4

Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource technology. 2015; 192:31-6. DOI: 10.1016/j.biortech.2015.05.053

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. 2008;1617(1):1-16.

Yu G, Li B, Liu C, Zhang Y, Wang H, Mu X. Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Industrial crops and products. 2013;50:750-7. DOI: 10.1016/j.indcrop.2013.08.053

Chen H, Fu Y, Wang Z, Qin M. Degradation and redeposition of the chemical components of aspen wood during hot water extraction. BioResources. 2015;10(2):3005-16. DOI:10.15376/BIORES.10.2.3005-3016

Yerizam M, Jannah AM, Aprianti N, Yandriani Y, Rendana M, Ernas AQ, et al. Bioethanol production from coconut husk using DES-NADES pretreatment and enzymatic hydrolysis method. Comptes Rendus Chimie. 2023;26(S1):1-10. DOI: 10.5802/crchim.226