Effect of the Electronic Structure of Para-Substituted Benzaldehyde Benzohydrazone on Its Antimicrobial Activity: A DFT Analysis

Maurice N'bouké

Laboratoire de Chimie Physique Matériaux et de Modélisation Moléculaire (LPC3M), Unité de Chimie Théorique et de Modélisation Moléculaire (UCT2M), Université d’Abomey-Calavi (UAC), Benin and Laboratoire de Chimie Organique Physique et de Synthèse, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Benin.

Sèlonou Gautier Kankinou

Laboratoire de Chimie Physique Matériaux et de Modélisation Moléculaire (LPC3M), Unité de Chimie Théorique et de Modélisation Moléculaire (UCT2M), Université d’Abomey-Calavi (UAC), Benin.

Assongba Gaston Kpotin *

Laboratoire de Chimie Physique Matériaux et de Modélisation Moléculaire (LPC3M), Unité de Chimie Théorique et de Modélisation Moléculaire (UCT2M), Université d’Abomey-Calavi (UAC), Benin.

Juan S. Gómez-Jeria

Quantum Pharmacology Unit, Department of Chemistry, Faculty of Sciences, University of Chile. Las Palmeras 3425, Santiago 7800003, Chile.

Salomé D. S. Kpoviessi

Laboratoire de Chimie Organique Physique et de Synthèse, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Benin.

Guy S. Y. Atohoun

Laboratoire de Chimie Physique Matériaux et de Modélisation Moléculaire (LPC3M), Unité de Chimie Théorique et de Modélisation Moléculaire (UCT2M), Université d’Abomey-Calavi (UAC), Benin.

*Author to whom correspondence should be addressed.


Abstract

Bacillus subtilis is a bacterium that has demonstrated its efficacy across various domains, including industry, agriculture, and commerce, owing to its protective, inhibitory, and biological mechanisms against specific microbes. However, at high concentrations, it can lead to food poisoning and severe infections, resulting in symptoms such as diarrhea and vomiting. Bacterial spores produced by Bacillus subtilis can induce conditions like gas gangrene and tetanus. In this context, benzohydrazones are recognized for their antimicrobial activity, particularly against Bacillus subtilis. This study aims to elucidate the relationship between the electronic structure of para-substituted benzaldehyde benzohydrazone derivatives and their antimicrobial activity. This leads to the proposal of a 2D pharmacophore for predicting the antibacterial activity of these derivatives. The quantitative structure-activity relationship (QSAR) approach employed is the KPG method. The electronic structures were optimized using the density functional theory (DFT) method with the B3LYP functional and the 6-31G (d,p) basis set. Charge and local molecular orbitals were considered in the optimization process. The resulting prediction equation (R=98.95%, R²=97.91%, Adjusted R²=96.76%, F(5,9)=84.52) derived from multiple linear regression provides the basis for the proposed 2D pharmacophore. This equation shows that antimicrobial activity of benzohydrazone derivative is on charge and orbital controlled. This pharmacophore holds potential utility in designing new molecular structures with enhanced activity against Bacillus subtilis.

Keywords: Bacillus subtilis, DFT, hydrazone, KPG method, QSAR


How to Cite

N’bouké , M., Kankinou , S. G., Kpotin , A. G., Gómez-Jeria , J. S., Kpoviessi , S. D. S., & Atohoun , G. S. Y. (2023). Effect of the Electronic Structure of Para-Substituted Benzaldehyde Benzohydrazone on Its Antimicrobial Activity: A DFT Analysis. Asian Journal of Chemical Sciences, 13(6), 206–215. https://doi.org/10.9734/ajocs/2023/v13i6275

Downloads

Download data is not yet available.

References

Paul SI, Rahman Md. M, Salam MA, Khan Md AR, Islam Md T. Identification of marine sponge-associated bacteria of the SaintMartin’s island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture, 2021;545:737156 Available:https://doi.org/10.1016/j.aquaculture

Rahman MM, Paul SI, Akter T, Tay ACY, Foysal MJ. Islam MT. Whole-Genome Sequence of Bacillus subtilis WS1A, a Promising Fish Probiotic Strain Isolated from Marine Sponge of the Bay of Bengal. Microbiol Resour Announc (Dunning Hotopp, J. C., ed.). 2020;9. Available:https://doi.org/10.1128/MRA.00641-20

Errington J, Aart LT, van der. Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology. 2020;166:425–427 Available:https://doi.org/10.1099/mic.0.000922

Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, d Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens: Lipopeptides as inhibitors of phytopathogens. Microbial Biotechnology. 2015 ;8 :281–295 Available:https://doi.org/10.1111/1751-7915.12238

Giraud R. Bacillus : une bactérie auxiliaire pour la santé du gazon. French Par Romain GIRAUD; 2019

Turner JT. Factors Relating to Peanut Yield Increases After Seed Treatment with Bacillus subtilis. Plant Dis. 1991;75 :347. Available:https://doi.org/10.1094/PD-75-0347

Demeule Elizabeth. Effet répressif de Bacillus subtilis et de Bacillus pumilus envers Rhizoctonia solani sur tomate et concombre de serre. French. Mémoire de maitrise, Québec, Canada ; 2020.

Zhang H, Zhang Y, Hou Z, Wu X, Gao H, Sun F, et al. Biodegradation of triazine herbicide metribuzin by the strain Bacillus sp. N1. Journal of Environmental Science and Health, Part B, 2014;49:79–86. Available:https://doi.org/10.1080/03601234.2014.844610

Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD, Hingmire SA. Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environ Monit Assess. 2014; 186:8599–8610 Available:https://doi.org/10.1007/s10661-014-4027-8

El-Helow ER, Badawy MEI, Mabrouk MEM, Mohamed EAH, El-Beshlawy YM. Biodegradation of Chlorpyrifos by a Newly Isolated Bacillus subtilis Strain, Y242. Bioremediation Journal. 2013;17:113–123. Available:https://doi.org/10.1080/10889868.2013.786019

Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control. 2013;65:109–117 Available:https://doi.org/10.1016/j.biocontrol.2012.11.009

Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment. 2017;31:446–459 Available:https://doi.org/10.1080/13102818.2017.1286950

Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology. 2008 ;16:115–125. Available:https://doi.org/10.1016/j.tim.2007.12.009

Patrick Berche. Une histoire des microbes. French Ed John Libbey Eurotext; 2007.

Rapport d’évaluation finale de Bacillus cereus et de Bacillus subtilis. French, Rapport, Canada, 2018

Benmansour Née Baba Hamed Yamina. Synthèse, étude physico-chimique et ac tivité biologique des complexes de cuivre et/ou nickel dérivés d’Hydrazone et Thiadiazole. French, Thèse; 2015.

Suman Bala, Goldie Uppal, Anu Kajal, Sunil Kamboj and Vaibhav Sharma. Hydrazones as Promising Lead with Diversity in Bioactivity-therapeuticPotential in Present Scenario. International Journal of Pharmaceutical Sciences Review and Research. 2013;18Z:65–74

Katritzky AR. Advances in Quantitative Structure Property Relationships. Volume 2 Edited by Marvin Charton (Pratt Institute) and Barbara I. Charton (St. John’s University). JAI Press Inc.: Stamford, CT. 1999. xi + 257 pp. $109.50. ISBN 0-7623-0067-1. J. Am. Chem. Soc. 2000;122: 1846–1846 . Available:https://doi.org/10.1021/ja995762c

Kpotin GA, Bédé AL, Houngue-Kpota A, Anatovi W, Kuevi UA, Atohoun GS, et al. Relationship between electronic structures and antiplasmodial activities of xanthone derivatives: a 2D-QSAR approach. Struct Chem. 2019;30:2301–2310. Available:https://doi.org/10.1007/s11224-019-01333-w

Grover M, Singh B, Bakshi M, Singh S. Quantitative structure–property relationships in pharmaceutical research – Part 1. Pharmaceutical Science & Technology Today. 2000;3:28–35 Available:https://doi.org/10.1016/S1461-5347(99)00214-X

Sizochenko N, Gajewicz A, Leszczynski J, Puzyn T. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Nanoscale. 2016;8:7203–7208. Available:https://doi.org/10.1039/C5NR08279J

Kankinou S, Gautier, Gaston Kpotin, Jean-Baptiste Mensah and Juan-Sebastián Gómez-Jeria. Quantum-Chemical Study of the Relationships between Electronic Structure and the Affinity of Benzisothiazolylpiperazine Derivatives for the Dopamine Hd2l and Hd3 Receptors. The Pharmaceutical and Chemical Journal. 2019;6:73–90

Puzyn T, Leszczynski J, Cronin MT. Recent Advances in QSAR Studies: Methods and Applications, Ed. Springer Netherlands, Dordrecht; 2010. Available:https://doi.org/10.1007/978-1-4020-9783-6

Furrow E. Michael and Myers G. Andrew. Practical Procedures for the Preparation of N-tert-Butyldimethylsilylhydrazones and Their Use in Modified Wolff-Kishner Reductions and in the Synthesis of Vinyl Halides and gem-Dihalides. 2004;126.

Bardieu Atchade, Salomé DS. Kpoviessi, Raymond H. Fatondji, Léon A. Ahoussi, Joachim Gbenou, Georges C. Accrombessi, et al. Synthesis, Purity Verification and Comparison of Antiplasmodial and Antitrypanosomal Activities of Hydrazone Derivatives and Corresponding Thiosemicarbazones. Journal of Pharmaceutical, Chemical and Biological. 2015;3:279–294

Juan S. Gómez-Jeria, Andrés Robles-Navarro, Gaston Assongba Kpotin, Nicolás Garrido-Sáez and Nelson Gatica-Díaz. Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. Chemistry Research Journal. 2020;5:32–52

Houngue MTAK, N’bouke M, Atchade B, Doco RC, Kuevi UA, Kpotin GA, et al. Quantum Chemical Studies of Some Hydrazone Derivatives. CC. 2018; 06:1–14 Available:https://doi.org/10.4236/cc.2018.61001

Organisation for Economic Co-operation and Development. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. 2007;69.

Gomez-Jeria JS, Valdebenito-Gamboa J. A quantum-chemical analysis of the antiproliferative activity of N-3-benzimidazolephenylbisamide derivatives against MGC803, HT29, MKN45 and SW620 cancer cell lines. Der Pharma Chemica. 2015;7:103–121

Robles-Navarro A, Gómez Jeria J. A quantum-chemical analysis of the relationships between electronic structure and cytotoxicity, GyrB inhibition, DNA supercoiling inhibition and antitubercular activity of a series of quinoline–aminopiperidine hybrid analogues. Der Pharma Chemica. 2016 ;8 :417–440

Gómez Jeria JS. La Pharmacologie Quantique. Boll. Chim. French Farmac. 1982;121:619–25.

Gómez-Jeria JS. Flores-Catalán M. Quantum-chemical modeling of the relationships between molecular structure and In vitro multi-step, multimechanistic drug effects. HIV-1 Replication Inhibition and Inhibition of Cell Proliferation as Examples. Canadian Chemical Transactions, 2013;1:215–37

Gómez-Jeria JS. Elements of molecular electronic pharmacology. Ediciones Sokar, Santiago de Chile; 2013.

Bruna-Larenas T, Gómez-Jeria JS. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core. Int. J. Med. Chem. 2012;1-16,Article ID 682495

Leal MS, Robles-Navarro A, and Gómez-Jeria JS. A density functional study of the inhibition of microsomal prostaglandin E2 Synthase-1 by 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3- d]pyrimidin-4(3H)-one and pyrido[2,3- d]pyrimidin-4(3H)-one derivatives. Der Pharm. Lett. 2015;7:54–66

Barahona-Urbina C, Nuñez-Gonzalez S and Gómez-Jeria JS. Model-based quantum chemical study of the uptake of some polychlorinated pollutant compounds by Zucchini subspecies. J. Chil. Chem. Soc. 2012;57:1497–503

Gómez-Jeria JS. Modeling the drugreceptor interaction in quantum pharmacology in molecules. In Physics, Chemistry, and Biology. J. Maruani Editor, Netherlands: Springer; 1989.

Gómez-Jeria JS. New set of local reactivity indices within the Hartree-Fock-Roothaan and density functional theory frameworks. Canad. Chem. Trans. 2013;1:25–55

Gómez-Jeria JS. On some problems in quantum pharmacology I. The partition functions. Int. J. Quant. Chem. 1983;23:969–72

Gómez-Jeria JS. A DFT analysis of the inhibition of carbonic anhydrase isoforms I, II, IX and XII by a series of benzenesulfonamides and tetrafluorobenzenesulfonamides Amer. J. Chem. App. 2015;2(3):66-80.

Gómez-Jeria JS. Tables of proposed values for the orientational parameter of the substituent I. Monoatomic, Diatomic, Triatomic, n-CnH2n+1, O-n-CnH2n+1, NRR’, and Cycloalkanes (With a Single Ring) Substituents. Res. J. Pharmac. Biol. Chem. Sci. 2016;7:288–94

Jankulovska M.S. and Dimova V. Pratical application of QSAR technique for prediction of biological activity of selected hydrazones. Journal of Agricultural, Food and Environmental Sciences. 2019;73

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Rega N. G03 Rev. E.01. Gaussian, Pittsburgh, PA, USA; 2007.

Gómez-Jeria JS. An empirical way to correct some drawbacks of mulliken population analysis. J. Chil. Chem. Soc. 2009;54:482–85

Gómez-Jeria JS. D-Cent-QSAR: A program to generate local atomic reactivity indices from Gaussian 03 log files. v. 1.0. Santiago, Chile; 2014.

Statistica v. 8.0. 2300 East 14 th St. Tulsa, OK 74104. USA; 1984.

Moore DS, McCabe GP, Craig BA. Introduction to the Practice of Statistics, 6th Ed. W. H. Freeman; 2014.